Abstract
We conducted the meta-analysis of all relevant case-control studies aiming to evaluate the relationships of common polymorphisms in forkhead box E1 (FOXE1) and ataxia telangiectasia mutated (ATM) genes to the risk of papillary thyroid carcinoma (PTC). A range of electronic databases were searched without language restrictions: Web of Science (1945 ~ 2013), the Cochrane Library Database (Issue 12, 2013), PubMed (1966 ~ 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), and the Chinese Biomedical Database (CBM) (1982 ~ 2013). This meta-analysis was conducted using the STATA 12.0 software. Crude odds ratio (OR) with their 95 % confidence interval (CI) were calculated. Eight case-control studies with 2,085 PTC patients and 10,341 healthy controls were included. Fourteen common polymorphisms were evaluated, including rs3758249 A > G, rs907577 G > A, rs1867277 G > A, rs3021526 C > T, rs1443434 G > T, rs907580 G > A, rs965513 A > G, rs944289 C > T, and rs189037 G > A polymorphisms in the FOXE1 gene and rs373759 G > A, rs4988099 A > G, rs1801516 G > A, rs664677 T > C, and rs609429 G > C polymorphisms in the ATM gene. Our results demonstrated that the FOXE genetic polymorphisms might be closely related to an increased risk of developing PTC under five genetic models (all P < 0.005), especially for rs3758249, rs907577, rs1867277, rs3021526, rs1443434, rs907580, rs704839, rs894673, and rs10119760 polymorphisms. Nevertheless, no positive associations were found between the ATM genetic polymorphisms and the development of PTC (all P > 0.05). The current meta-analysis provided evidence that FOXE1 genetic polymorphisms may contribute to increased PTC risk, especially for rs3758249, rs907577, rs1867277, rs3021526, rs1443434, rs907580, rs704839, rs894673, and rs10119760 polymorphisms. However, the ATM genetic polymorphisms may not be important dominants of susceptibility to PTC.
Collapse