1
|
Daniel DC, Johnson EM. PURA, the gene encoding Pur-alpha, member of an ancient nucleic acid-binding protein family with mammalian neurological functions. Gene 2017; 643:133-143. [PMID: 29221753 DOI: 10.1016/j.gene.2017.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
The PURA gene encodes Pur-alpha, a 322 amino acid protein with repeated nucleic acid binding domains that are highly conserved from bacteria through humans. PUR genes with a single copy of this domain have been detected so far in spirochetes and bacteroides. Lower eukaryotes possess one copy of the PUR gene, whereas chordates possess 1 to 4 PUR family members. Human PUR genes encode Pur-alpha (Pura), Pur-beta (Purb) and two forms of Pur-gamma (Purg). Pur-alpha is a protein that binds specific DNA and RNA sequence elements. Human PURA, located at chromosome band 5q31, is under complex control of three promoters. The entire protein coding sequence of PURA is contiguous within a single exon. Several studies have found that overexpression or microinjection of Pura inhibits anchorage-independent growth of oncogenically transformed cells and blocks proliferation at either G1-S or G2-M checkpoints. Effects on the cell cycle may be mediated by interaction of Pura with cellular proteins including Cyclin/Cdk complexes and the Rb tumor suppressor protein. PURA knockout mice die shortly after birth with effects on brain and hematopoietic development. In humans environmentally induced heterozygous deletions of PURA have been implicated in forms of myelodysplastic syndrome and progression to acute myelogenous leukemia. Pura plays a role in AIDS through association with the HIV-1 protein, Tat. In the brain Tat and Pura association in glial cells activates transcription and replication of JC polyomavirus, the agent causing the demyelination disease, progressive multifocal leukoencephalopathy. Tat and Pura also act to stimulate replication of the HIV-1 RNA genome. In neurons Pura accompanies mRNA transcripts to sites of translation in dendrites. Microdeletions in the PURA locus have been implicated in several neurological disorders. De novo PURA mutations have been related to a spectrum of phenotypes indicating a potential PURA syndrome. The nucleic acid, G-rich Pura binding element is amplified as expanded polynucleotide repeats in several brain diseases including fragile X syndrome and a familial form of amyotrophic lateral sclerosis/fronto-temporal dementia. Throughout evolution the Pura protein plays a critical role in survival, based on conservation of its nucleic acid binding properties. These Pura properties have been adapted in higher organisms to the as yet unfathomable development of the human brain.
Collapse
Affiliation(s)
- Dianne C Daniel
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
2
|
Schenkel LC, Schwartz C, Skinner C, Rodenhiser DI, Ainsworth PJ, Pare G, Sadikovic B. Clinical Validation of Fragile X Syndrome Screening by DNA Methylation Array. J Mol Diagn 2016; 18:834-841. [PMID: 27585064 DOI: 10.1016/j.jmoldx.2016.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/14/2016] [Accepted: 06/21/2016] [Indexed: 01/11/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. It is most frequently caused by an abnormal expansion of the CGG trinucleotide repeat (>200 repeats) located in the promoter of the fragile X mental retardation gene (FMR1), resulting in promoter DNA hypermethylation and gene silencing. Current clinical tests for FXS are technically challenging and labor intensive, and may involve use of hazardous chemicals or radioisotopes. We clinically validated the Illumina Infinium HumanMethylation450 DNA methylation array for FXS screening. We assessed genome-wide and FMR1-specific DNA methylation in 32 males previously diagnosed with FXS, including nine with mosaicism, as well as five females with full mutation, and premutation carrier males (n = 11) and females (n = 11), who were compared to 300 normal control DNA samples. Our findings demonstrate 100% sensitivity and specificity for detection of FXS in male patients, as well as the ability to differentiate patients with mosaic methylation defects. Full mutation and premutation carrier females did not show FMR1 methylation changes. We have clinically validated this genome-wide DNA methylation assay as a cost- and labor-effective alternative for sensitive and specific screening for FXS, while ruling out the most common differential diagnoses of FXS, Prader-Willi syndrome, and Sotos syndrome in the same assay.
Collapse
Affiliation(s)
- Laila C Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Charles Schwartz
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Cindy Skinner
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - David I Rodenhiser
- Department of Biochemistry, Oncology and Paediatrics, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Children's Health Research Institute, London Health Sciences Center, London, Ontario, Canada
| | - Peter J Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Department of Biochemistry, Oncology and Paediatrics, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Children's Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Molecular Genetics Laboratory, London Health Sciences Center, London, Ontario, Canada
| | - Guillaume Pare
- Departments of Pathology and Molecular Medicine and Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada; Children's Health Research Institute, London Health Sciences Center, London, Ontario, Canada; Molecular Genetics Laboratory, London Health Sciences Center, London, Ontario, Canada.
| |
Collapse
|
3
|
Basehore MJ, Friez MJ. Molecular analysis of fragile X syndrome. CURRENT PROTOCOLS IN HUMAN GENETICS 2014; 80:9.5.1-9.5.19. [PMID: 24510684 DOI: 10.1002/0471142905.hg0905s80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gene responsible for Fragile X syndrome, fragile X mental retardation-1 (FMR1), contains an unstable sequence of CGG trinucleotide repeats in its promoter region. Expansions of >200 trinucleotide repeats are considered full mutations and typically lead to abnormal methylation of the region, resulting in loss of FMR1 expression. Males with loss of FMR1 protein are expected to be affected by Fragile X syndrome, while females may or may not clinically manifest features of the condition. The protocols in this unit outline the complementary use of polymerase chain reaction (PCR) and methylation-sensitive Southern blot hybridization to accurately measure trinucleotide repeat size and methylation status. These protocols are also used to evaluate CGG repeat size in two adult-onset conditions known for their association with FMR1 premutation alleles, Fragile X Tremor/Ataxia (FXTAS) syndrome and Premature Ovarian Failure (POF).
Collapse
|
4
|
Tan EC, Lai PS. Molecular diagnosis of neurogenetic disorders involving trinucleotide repeat expansions. Expert Rev Mol Diagn 2014; 5:101-9. [PMID: 15723596 DOI: 10.1586/14737159.5.1.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are more than 15 known neurogenetic disorders involving trinucleotide repeat expansion. Expanded repeats range from small expansions of 20-100 copies to larger expansions of up to several thousand units. These dynamic expansions result in variability in age of onset, degree of severity and clinical presentation. Individuals carrying alleles in the intermediate range, known as premutation alleles, are often asymptomatic, but can potentially transmit a further expanded allele to his/her offspring. For autosomal dominant adult-onset disorders, carriers are asymptomatic prior to disease onset. With current molecular tools, it is now possible to determine the presence and number of expanded repeats for accurate diagnosis, presymptomatic testing and carrier status screening. This review examines some of the current approaches for molecular diagnosis and discusses the issues unique to triplet repeat diseases.
Collapse
Affiliation(s)
- Ene-Choo Tan
- DSO National Laboratories, Population Genetics Programme, Defence Medical and Environmental Research Institute, 27 Medical Drive, 117510 Singapore.
| | | |
Collapse
|
5
|
Abstract
The gene responsible for Fragile X syndrome, fragile X mental retardation-1 (FMR1), contains an unstable sequence of CGG trinucleotide repeats in its promoter region. Expansions of >200 trinucleotide repeats are considered full mutations and typically lead to abnormal methylation of the region resulting in loss of FMR1 expression. Males with loss of FMR1 protein are expected to be affected by Fragile X syndrome while females may or may not clinically manifest features of the condition. The protocols in this unit outline the complementary use of polymerase chain reaction (PCR) and methylation-sensitive Southern blot hybridization to accurately measure trinucleotide repeat size and methylation status. These protocols are also used to evaluate CGG repeat size in two adult-onset conditions known for their association with FMR1 premutation alleles, Fragile X Tremor/Ataxia (FXTAS) syndrome and Premature Ovarian Failure (POF).
Collapse
|
6
|
Abstract
PURPOSE Fragile X syndrome is the most common form of hereditary intellectual disability. Detection of the fragile X phenotype in the prepubertal period is very difficult, and early detection might assist in early developmental intervention and reproductive counseling. A pilot study was conducted to establish the feasibility of newborn screening for fragile X syndrome. METHODS A prospective study was done contacting mothers postdelivery in two hospitals in upstate South Carolina from 2005 to 2006. With their permission, blood samples were obtained from the male infants via heelstick and analyzed. RESULTS A total of 1,459 newborns were tested, and 5 abnormal results were obtained. The results included one sex chromosome aneuploidy (47, XXY), two premutations, and two full mutations. CONCLUSIONS Our study establishes the potential feasibility of such a screening process. However, more complete studies assessing a larger population and risk-benefit analyses are necessary before any universal application of this test. Our detection rate for fragile X syndrome (1:730) was inexplicably greater than anticipated but likely represents a chance occurrence among the small number of infants tested.
Collapse
|
7
|
Kenner C, Gallo AM, Bryant KD. Promoting children's health through understanding of genetics and genomics. J Nurs Scholarsh 2006; 37:308-14. [PMID: 16396402 DOI: 10.1111/j.1547-5069.2005.00054.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To describe the effects of genetics and genomics on children's health care. ORGANIZING CONSTRUCT The breakthroughs in the Human Genome Project have great potential for disease prediction, treatment, and prevention in the health care of children with chronic health conditions. Most childhood conditions based on a single gene are influenced by a complex interaction of genetic and environmental factors. METHODS A review of the literature was conducted to determine the most common childhood diseases linked to genetic causes. FINDINGS Two examples were selected to depict how a health professional would use genetic knowledge to provide holistic health promotion and disease prevention. CONCLUSIONS Knowledge of the interaction of the genetic profile coupled with a person's lifestyle, work environment, and family context provide a more holistic picture of a person's health profile. The clinical implications are that this knowledge will provide opportunities for health professionals to advise families on individualized treatment options or to tailor health promotion to future disease states based on genes and their interaction with the environment.
Collapse
Affiliation(s)
- Carole Kenner
- University of Oklahoma Health Sciences Center, College of Nursing, Oklahoma City, OK 73117, USA.
| | | | | |
Collapse
|