1
|
Assessment of Safety and Immunogenicity of MHC homozygous iPSC-derived CD34+ Hematopoietic Progenitors in a NHP Model. Blood Adv 2022; 6:5267-5278. [PMID: 35404997 PMCID: PMC9631690 DOI: 10.1182/bloodadvances.2022006984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022] Open
Abstract
Infusion of iHPs is safe and well tolerated in NHPs. iHPs are hypoimmunogenic and can be administered with a low risk of alloimmunization.
Administration of ex vivo expanded somatic myeloid progenitors has been explored as a way to facilitate a more rapid myeloid recovery and improve overall survival after myeloablation. Recent advances in induced pluripotent stem cell (iPSC) technologies have created alternative platforms for supplying off-the-shelf immunologically compatible myeloid progenitors, including cellular products derived from major histocompatibility complex (MHC) homozygous superdonors, potentially increasing the availability of MHC-matching cells and maximizing the utility of stem cell banking. However, the teratogenic and tumorigenic potential of iPSC-derived progenitor cells and whether they will induce alloreactive antibodies upon transfer remain unclear. We evaluated the safety and efficacy of using CD34+CD45+ hematopoietic progenitors derived from MHC homozygous iPSCs (iHPs) to treat cytopenia after myeloablative hematopoietic stem cell (HSC) transplantation in a Mauritian cynomolgus macaque (MCM) nonhuman primate (NHP) model. We demonstrated that infusion of iHPs was well tolerated and safe, observing no teratomas or tumors in the MCMs up to 1 year after HSC transplantation and iHP infusion. Importantly, the iHPs also did not induce significant levels of alloantibodies in MHC-matched or -mismatched immunocompetent MCMs, even after increasing MHC expression on iHPs with interferon-γ. These results support the feasibility of iHP use in the setting of myeloablation and suggest that iHP products pose a low risk of inducing alloreactive antibodies.
Collapse
|
2
|
Farese AM, Drouet M, Herodin F, Bertho JM, Thrall KD, Authier S, Doyle-Eisele M, MacVittie TJ. Acute Radiation Effects, the H-ARS in the Non-human Primate: A Review and New Data for the Cynomolgus Macaque with Reference to the Rhesus Macaque. HEALTH PHYSICS 2021; 121:304-330. [PMID: 34546214 DOI: 10.1097/hp.0000000000001442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Medical countermeasure development under the US Food and Drug Administration animal rule requires validated animal models of acute radiation effects. The key large animal model is the non-human primate, rhesus macaque. To date, only the rhesus macaque has been used for both critical supportive data and pivotal efficacy trials seeking US Food and Drug Administration approval. The potential for use of the rhesus for other high priority studies such as vaccine development underscores the need to identify another non-human primate model to account for the current lack of rhesus for medical countermeasure development. The cynomolgus macaque, Macaca fascicularis, has an existing database of medical countermeasure development against the hematopoietic acute radiation syndrome, as well as the use of radiation exposure protocols that mimic the likely nonuniform and heterogenous exposure consequent to a nuclear terrorist event. The review herein describes published studies of adult male cynomolgus macaques that used two exposure protocols-unilateral, nonuniform total-body irradiation and partial-body irradiation with bone marrow sparing-with the administration of subject-based medical management to assess mitigation against the hematopoietic acute radiation syndrome. These studies assessed the efficacy of cytokine combinations and cell-based therapy to mitigate acute radiation-induced myelosuppression. Both therapeutics were shown to mitigate the myelosuppression of the hematopoietic acute radiation syndrome. Additional studies being presented herein further defined the dose-dependent hematopoietic acute radiation syndrome of cynomolgus and rhesus macaques and a differential dose-dependent effect with young male and female cynomolgus macaques. The database supports the investigation of the cynomolgus macaque as a comparable non-human primate for efficacy testing under the US Food and Drug Administration animal rule. Critical gaps in knowledge required to validate the models and exposure protocols are also identified.
Collapse
Affiliation(s)
- Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore
| | - Michel Drouet
- Armed Forces Biomedical Research Institute, France, Department of Radiobiology, Brétigny-sur-Orge, France
| | | | - Jean-Marc Bertho
- Institute of Radiation Protection and Nuclear Safety (IRSN), 31 avenue de la division Leclerc, 92260, Fontenay-aux-Roses, France; Present address: French Nuclear Safety Authority (ASN), 15 rue Louis Lejeune 92540 Montrouge, France
| | | | - Simon Authier
- Charles River, 445 Armand Frappier, Laval, QC, Canada, H7V 4B3
| | - Melanie Doyle-Eisele
- Lovelace Biomedical Research Institute, Laboratory Animal Sciences (Life Sciences), Albuquerque, NM
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore
| |
Collapse
|
3
|
MacVittie TJ, Farese AM, Kane MA. Animal Models: A Non-human Primate and Rodent Animal Model Research Platform, Natural History, and Biomarkers to Predict Clinical Outcome. HEALTH PHYSICS 2021; 121:277-281. [PMID: 34546212 PMCID: PMC8462056 DOI: 10.1097/hp.0000000000001479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
| | - Ann M. Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
4
|
Therapeutic Potential of Mesenchymal Stromal Cells and Extracellular Vesicles in the Treatment of Radiation Lesions-A Review. Cells 2021; 10:cells10020427. [PMID: 33670501 PMCID: PMC7922519 DOI: 10.3390/cells10020427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Ionising radiation-induced normal tissue damage is a major concern in clinic and public health. It is the most limiting factor in radiotherapy treatment of malignant diseases. It can also cause a serious harm to populations exposed to accidental radiation exposure or nuclear warfare. With regard to the clinical use of radiation, there has been a number of modalities used in the field of radiotherapy. These includes physical modalities such modified collimators or fractionation schedules in radiotherapy. In addition, there are a number of pharmacological agents such as essential fatty acids, vasoactive drugs, enzyme inhibitors, antioxidants, and growth factors for the prevention or treatment of radiation lesions in general. However, at present, there is no standard procedure for the treatment of radiation-induced normal tissue lesions. Stem cells and their role in tissue regeneration have been known to biologists, in particular to radiobiologists, for many years. It was only recently that the potential of stem cells was studied in the treatment of radiation lesions. Stem cells, immediately after their successful isolation from a variety of animal and human tissues, demonstrated their likely application in the treatment of various diseases. This paper describes the types and origin of stem cells, their characteristics, current research, and reviews their potential in the treatment and regeneration of radiation induced normal tissue lesions. Adult stem cells, among those mesenchymal stem cells (MSCs), are the most extensively studied of stem cells. This review focuses on the effects of MSCs in the treatment of radiation lesions.
Collapse
|
5
|
King GL, Sandgren DJ, Mitchell JM, Bolduc DL, Blakely WF. System for Scoring Severity of Acute Radiation Syndrome Response in Rhesus Macaques ( Macaca mulatta). Comp Med 2018; 68:474-488. [PMID: 30305197 PMCID: PMC6310201 DOI: 10.30802/aalas-cm-17-000106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 03/17/2018] [Indexed: 11/05/2022]
Abstract
We developed a clinical assessment tool for use in an NHP radiation model to 1) quantify severity responses for subsyndromes of the acute radiation syndrome (ARS; that is, hematopoietic and others) and 2) identify animals that required enhanced monitoring. Our assessment tool was based primarily on the MEdical TREatment ProtocOLs for Radiation Accident Victims (METREPOL) scoring system but was adapted for NHP to include additional indices (for example, behaviors) for use in NHP studies involving limited medical intervention. Male (n = 16) and female (n = 12) rhesus macaques (Macaca mulatta; 5 groups: sham and 1.0, 3.5, 6.5, and 8.5 Gy; n = 6 per group) received sham- or bilateral 60Co γ-irradiation at approximately 0.6 Gy/mn. Clinical signs of ARS and blood analysis were obtained before and serially for clinical assessment during the period of 6 h to 60 d after sham or 60Co irradiation. Minimal supportive care (that is, supplemental nutrition, subcutaneous fluid, loperamide, acetaminophen, and topical antibiotic ointment) was prescribed based on clinical observations. Results from clinical signs and assays for assessment of relevant organ systems in individual animals were stratified into ARS severity scores of normal (0), mild (1), moderate (2), and severe (3 or 4). Individual NHP were scored for maximal subsyndrome ARS severity in multiple organ systems by using the proposed ARS scoring system to obtain an overall ARS response category. One NHP died unexpectedly. The multiple-parameter ARS severity scoring tool aided in the identification of animals in the high-dose (6.5 and 8.5 Gy) groups that required enhanced monitoring.
Collapse
Affiliation(s)
- Gregory L King
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - David J Sandgren
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jennifer M Mitchell
- Departments of Veterinary Sciences, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David L Bolduc
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - William F Blakely
- Departments of Scientific Research, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
6
|
Ghosh S, Indracanti N, Joshi J, Indraganti PK. Rescuing Self: Transient Isolation and Autologous Transplantation of Bone Marrow Mitigates Radiation-Induced Hematopoietic Syndrome and Mortality in Mice. Front Immunol 2017; 8:1180. [PMID: 28993772 PMCID: PMC5622201 DOI: 10.3389/fimmu.2017.01180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/06/2017] [Indexed: 01/19/2023] Open
Abstract
The inflamed bone marrow niche shortly after total body irradiation (TBI) is known to contribute to loss of hematopoietic stem cells in terms of their number and function. In this study, autologous bone marrow transfer (AL-BMT) was evaluated as a strategy for mitigating hematopoietic form of the acute radiation syndrome by timing the collection phase (2 h after irradiation) and reinfusion (24 h after irradiation) using mice as a model system. Collection of bone marrow (BM) cells (0.5 × 106 total marrow cells) 2 h after lethal TBI rescued different subclasses of hematopoietic stem and progenitor cells (HSPCs) from the detrimental inflammatory and damaging milieu in vivo. Cryopreservation of collected graft and its reinfusion 24 h after TBI significantly rescued mice from lethal effects of irradiation (65% survival against 0% in TBI group on day 30th) and hematopoietic depression. Transient hypometabolic state (HMS) induced 2 h after TBI effectively preserved the functional status of HSPCs and improved hematopoietic recovery even when BM was collected 8 h after TBI. Homing studies suggested that AL-BMT yielded similar percentages for different subsets of HSPCs when compared to syngeneic bone marrow transfer. The results suggest that the timing of collection, and reinfusion of graft is crucial for the success of AL-BMT.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.,S.N. Pradhan Centre for Neuroscience-University of Calcutta, Kolkata, India
| | - Namita Indracanti
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Jayadev Joshi
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.,S.N. Pradhan Centre for Neuroscience-University of Calcutta, Kolkata, India
| | - Prem Kumar Indraganti
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
7
|
MacVittie TJ, Farese AM, Jackson W. The Hematopoietic Syndrome of the Acute Radiation Syndrome in Rhesus Macaques: A Systematic Review of the Lethal Dose Response Relationship. HEALTH PHYSICS 2015; 109:342-66. [PMID: 26425897 DOI: 10.1097/hp.0000000000000352] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Well characterized animal models that mimic the human response to potentially lethal doses of radiation are required to assess the efficacy of medical countermeasures under the criteria of the U.S. Food and Drug Administration "animal rule." Development of a model requires the determination of the radiation dose response relationship and time course of mortality and morbidity across the hematopoietic acute radiation syndrome. The nonhuman primate, rhesus macaque, is a relevant animal model that may be used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality at selected lethal doses of total body irradiation. A systematic review of relevant studies that determined the dose response relationship for the hematopoietic acute radiation syndrome in the rhesus macaque relative to radiation quality, dose rate, and exposure uniformity has never been performed. The selection of data cohorts was made from the following sources: Ovid Medline (1957-present), PubMed (1954-present), AGRICOLA (1976-present), Web of Science (1954-present), and U.S. HHS REPORT (2002 to present). The following terms were used: Rhesus, total body-irradiation, total body x irradiation, TBI, irradiation, gamma radiation, hematopoiesis, LD50/60, Macaca mulatta, whole-body irradiation, nonhuman primate, NHP, monkey, primates, hematopoietic radiation syndrome, mortality, and nuclear radiation. The reference lists of all studies, published and unpublished, were reviewed for additional studies. The total number of hits across all search sites was 3,001. There were a number of referenced, unpublished, non-peer reviewed government reports that were unavailable for review. Fifteen studies, 11 primary (n = 863) and four secondary (n = 153) studies [n = 1,016 total nonhuman primates (NHP), rhesus Macaca mulatta] were evaluated to provide an informative and consistent review. The dose response relationships (DRRs) were determined for uniform or non-uniform total body irradiation (TBI) with 250 kVp or 2 MeV x radiation, Co gamma radiation and reactor- and nuclear weapon-derived mixed gamma: neutron-radiation, delivered at various dose rates from a total body, bilateral, rotational, or unilateral exposure aspect. The DRRs established by a probit analysis vs. linear dose relationship were characterized by two main parameters or dependent variables: a slope and LD50/30. Respective LD50/30 values for studies that used 250 kVp x radiation (five primary studies combined, n = 338), 2 MeV x radiation, Co gamma radiation, and steady-state reactor-derived mixed gamma:neutron radiation for total body uniform exposures were 521 rad [498, 542], 671 rad [632, 715], 644 rad [613, 678], and 385 rad [357, 413]. The respective slopes were steep and ranged from 0.738 to 1.316. The DRR, LD50/30 values and slopes were also determined for total body, non-uniform, unilateral, pulse-rate exposures of mixed gamma:neutron radiation derived at reactor and nuclear weapon detonations. The LD50/30 values were, respectively, 395 rad [337, 432] and 412 rad [359, 460]. Secondary data sets of limited studies that did not describe a DRR were used to support the mid-to-high lethal dose range for the H-ARS and the threshold dose range for the concurrent acute GI ARS. The available evidence provided a reliable and extensive database that characterized the DRR for the H-ARS in young rhesus macaques exposed to 250 kVp uniform total body x radiation without the benefit of medical management. A less substantial but consistent database demonstrated the DRR for total body exposure of differing radiation quality, dose rate and non-uniform exposure. The DRR for the H-ARS is characterized by steep slopes and relative LD50/30 values that reflect the radiation quality, exposure aspect, and dose rate over a range in time from 1954-2012.
Collapse
Affiliation(s)
- Thomas J MacVittie
- *University of Maryland, School of Medicine, Baltimore, MD; †Statistician, Rockville, MD
| | | | | |
Collapse
|
8
|
Guo M, Dong Z, Qiao J, Yu C, Sun Q, Hu K, Liu G, Wei L, Yao B, Man Q, Sun X, Liu Z, Song Z, Yu C, Chen Y, Luo Q, Liu S, Ai HS. Severe acute radiation syndrome: treatment of a lethally 60Co-source irradiated accident victim in China with HLA-mismatched peripheral blood stem cell transplantation and mesenchymal stem cells. JOURNAL OF RADIATION RESEARCH 2014; 55:205-9. [PMID: 23979075 PMCID: PMC3951066 DOI: 10.1093/jrr/rrt102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This is a case report of a 32-year-old man exposed to a total body dose of 14.5 Gy γ-radiation in a lethal (60)Co-source irradiation accident in 2008 in China. Frequent nausea, vomiting and marked neutropenia and lymphopenia were observed from 30 min to 45 h after exposure. HLA-mismatched peripheral blood stem cell transplantation combined with infusion of mesenchymal stem cells was used at Day 7. Rapid hematopoietic recovery, stable donor engraftment and healing of radioactive skin ulceration were achieved during Days 18-36. The patient finally developed intestinal obstruction and died of multi-organ failure on Day 62, although intestinal obstruction was successfully released by emergency bowel resection.
Collapse
Affiliation(s)
- Mei Guo
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Zheng Dong
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Jianhui Qiao
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Changlin Yu
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Qiyun Sun
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Kaixun Hu
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Guangxian Liu
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Li Wei
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Bo Yao
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Qiuhong Man
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Xuedong Sun
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Zhiqing Liu
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Zhiwu Song
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Chengze Yu
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| | - Ying Chen
- Department of Radiation, Institute Radiation of Medical, 27 Taipinglu, Beijing 100039, China
| | - Qingliang Luo
- Department of Radiation, Institute Radiation of Medical, 27 Taipinglu, Beijing 100039, China
| | - Sugang Liu
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
- Corresponding author: Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China.
| | - Hui-Sheng Ai
- Department of Hematology and Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, 8 Dongdajie, Beijing 100071, China
| |
Collapse
|
9
|
MacVittie TJ, Farese AM, Bennett A, Gelfond D, Shea-Donohue T, Tudor G, Booth C, McFarland E, Jackson W. The acute gastrointestinal subsyndrome of the acute radiation syndrome: a rhesus macaque model. HEALTH PHYSICS 2012; 103:411-426. [PMID: 22929470 DOI: 10.1097/hp.0b013e31826525f0] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of medical countermeasures against the acute gastrointestinal subsyndrome of the acute radiation syndrome in humans requires well characterized and validated animal models. These models must adhere to the criteria of the U.S. Food and Drug Administration's Animal Rule and consider the natural history and clinical context of the human radiation response and treatment in the nuclear terrorist scenario. The models must define the radiation dose- and time-dependent relationships for mortality and major signs of morbidity, including concurrent damage in other organs, such as the bone marrow, that may contribute to the overall mortality and morbidity. There are no such models of the gastrointestinal syndrome in response to total-body irradiation in the nonhuman primate. Herein, these parameters are defined for the rhesus macaque exposed to potentially lethal doses of radiation and administered medical management. Rhesus macaques (n = 69) were exposed bilaterally to 6 MV linear accelerator-derived photon total body irradiation to midline tissue (thorax) doses ranging from 10.0 to 14.0 Gy at 0.80 Gy min(-1). Following irradiation, all animals were administered supportive care consisting of fluids, anti-emetics, anti-diarrheal medication, antibiotics, blood transfusions, analgesics, and nutrition. The primary endpoint was survival at 15 d post-irradiation. Secondary endpoints included indices of dehydration, diarrhea, weight loss, hematological parameters, cellular histology of the small and large intestine, and mean survival time of decedents. Mortality within the 15-d in vivo study defined the acute gastrointestinal syndrome and provided an LD30/15 of 10.76 Gy, LD50/15 of 11.33 Gy, and an LD70/15 of 11.90 Gy. Intestinal crypt and villus loss were dose- and time-dependent with an apparent nadir 7 d post-irradiation and recovery noted thereafter. Severe myelosuppression and thrombocytopenia were noted in all animals, requiring the administration of antibiotics and blood transfusions. The model defines the dose response relationship and time course of acute gastrointestinal syndrome-induced morbidity and mortality in the rhesus macaque.
Collapse
Affiliation(s)
- Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rezvani M. Amelioration of the pathological changes induced by radiotherapy in normal tissues. J Pharm Pharmacol 2010; 60:1037-48. [DOI: 10.1211/jpp.60.8.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
Damage to normal tissues remains the most important limiting factor in the treatment of cancer by radiotherapy. In order to deliver a radiation dose sufficient to eradicate a localised tumour, the normal tissues need to be protected. A number of pharmacological agents have been used experimentally, and some clinically, to alleviate radiation damage to normal tissues but at present there is no effective clinical treatment to protect normal tissues against radiation injury. This paper reviews the efficacy of pharmacological substances used after radiation exposure. The limited evidence available suggests that radiation insult, like many other tissue injuries, is amenable to pharmacological intervention. However, care must be taken in the administration of these substances for the management of different aspects of radiation damage because there appears to be a tissue-specific response to different pharmacological agents. Also, one must be aware of the limitations of results obtained from animal models, which do not necessarily correlate to benefits in the clinic; the conflicting results reported with some modifiers of radiation damage; and the toxicity of these substances and radiation doses used in published studies. Conflicting results may arise from differences in the pathophysiologic processes involved in the development of radiation lesions in different tissues, and in the markers used to assess the efficacy of treatment agents.
Collapse
Affiliation(s)
- Mohi Rezvani
- Systems Biology Laboratory, 127 Milton Park, Abingdon, UK
| |
Collapse
|
11
|
Bertho JM, Mathieu E, Lauby A, Frick J, Demarquay C, Gourmelon P, Gorin NC, Thierry D. Feasibility and limits of bone marrow mononuclear cell expansion following irradiation. Int J Radiat Biol 2009; 80:73-81. [PMID: 14761852 DOI: 10.1080/09553000310001642894] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To define the ability of bone marrow mononuclear cells (BMMNC) to expand after irradiation and to determine the amount of apoptosis in irradiated expanded cells. MATERIALS AND METHODS Non-human primate BMMNC were irradiated in vitro at doses ranging from 0 to 4 Gy and were cultured during 1 week in the presence of interleukin 3, interleukin 6, stem cell factor, thrombopoietin and fms-like tyrosine kinase-3 ligand. The expansion yield of BMMNC, colony-forming cells and CD34(+) cells were compared with non-irradiated control cultures. Apoptosis in expanded cells was also defined by annexin V/propidium iodine staining. RESULTS Irradiation of BMMNC up to 1 Gy did not modify the ability of haematopoietic cells to expand. At higher doses, expansion of haematopoietic cells is reduced as compared with non-irradiated cultures but it remains significant. This reduction in expansion of BMMNC was related to radiation-induced apoptosis. CONCLUSION The results suggest that it is possible to expand haematopoietic cells after irradiation doses at least up to 2 Gy. This suggests a possible use of cell therapy for the treatment of radiation accident victims.
Collapse
Affiliation(s)
- J M Bertho
- Laboratoire de recherche sur les thérapies de l'irradiation, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux roses, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Prat M, Demarquay C, Frick J, Dudoignon N, Thierry D, Bertho JM. Use of flt3 ligand to evaluate residual hematopoiesis after heterogeneous irradiation in mice. Radiat Res 2006; 166:504-11. [PMID: 16953669 DOI: 10.1667/rr0568.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We evaluated the possibility of using plasma Flt3 ligand (FL) concentration as a biological indicator of bone marrow function after heterogeneous irradiation. Mice were irradiated with 4, 7.5 or 11 Gy with 25, 50, 75 or 100% of the bone marrow in the field of irradiation. This model of irradiation resulted in graded and controlled damage to the bone marrow. Mice exhibited a pancytopenia correlated with both the radiation dose and the percentage of bone marrow irradiated. The FL concentration in the blood increased with the severity of bone marrow aplasia. Nonlinear regression analysis showed that the FL concentration was strongly correlated with the total number of residual colony-forming cells 3 days after irradiation, allowing a precise estimate of residual hematopoiesis. Moreover, the FL concentration on day 3 postirradiation was correlated with the duration and severity of subsequent pancytopenia, suggesting that variations in FL concentrations might be used as a predictive indicator of bone marrow aplasia, especially by the use of linear regression equations describing these correlations. Our results provide a rationale for the use of FL concentration as a biological indicator of residual hematopoiesis after heterogeneous irradiation.
Collapse
Affiliation(s)
- Marie Prat
- Institut de Radioprotection et de Sûreté Nucléaire, DRPH/SRBE, Fontenay Aux Roses, France
| | | | | | | | | | | |
Collapse
|
13
|
Kashiwakura I, Inanami O, Abe Y, Satoh K, Takahashi TA, Kuwabara M. Regeneration of Megakaryocytopoiesis and ThrombopoiesisIn Vitrofrom X-Irradiated Human Hematopoietic Stem Cells. Radiat Res 2006; 166:345-51. [PMID: 16881735 DOI: 10.1667/rr3595.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the present study, we investigated whether X-irradiated hematopoietic stem cells can be induced to undergo megakaryocytopoiesis and thrombopoiesis in vitro using cytokine combinations that have been demonstrated to be effective for conferring increased survival on irradiated human CD34(+) megakaryocytic progenitor cells (colony-forming unit megakaryocytes; CFU-Meg), such as thrombopoietin (TPO), interleukin 3 (IL3), stem cell factor and FLT3 ligand. Culture of nonirradiated CD34(+) cells in serum-free medium supplemented with multiple cytokine combinations led to an approximately 200- to 600-fold increase in the total cell numbers by day 14 of culture. In contrast, the growth of X-irradiated cells was observed to be one-sixth to one-tenth that of the nonirradiated cultures. Similarly, total megakaryocytes were increased by 50- to 130-fold, while culture of X-irradiated cells yielded one-fourth to one-eighth of the control numbers. At this time, CD41(+) particles, which appeared to be platelets, were produced in the medium harvested from nonirradiated and irradiated cultures. Although radiation suppressed cell growth and megakaryocytopoiesis, there were no significant differences in thrombopoiesis between the two types of culture. These results suggest that X-irradiated CD34(+) cells can be induced to undergo nearly normal terminal maturation through megakaryocytopoiesis and thrombopoiesis by stimulation with appropriate cytokine combinations.
Collapse
Affiliation(s)
- Ikuo Kashiwakura
- Department of Radiological Technology, Hirosaki University School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Bertho JM, Frick J, Prat M, Demarquay C, Dudoignon N, Trompier F, Gorin NC, Thierry D, Gourmelon P. Comparison of autologous cell therapy and granulocyte-colony stimulating factor (G-CSF) injection vs. G-CSF injection alone for the treatment of acute radiation syndrome in a non-human primate model. Int J Radiat Oncol Biol Phys 2005; 63:911-20. [PMID: 15913916 DOI: 10.1016/j.ijrobp.2005.03.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 02/06/2023]
Abstract
PURPOSE To compare the efficacy of autologous cell therapy after irradiation combined with granulocyte-colony stimulating factor (G-CSF) injections with G-CSF treatment alone in a heterogeneous model of irradiation representative of an accidental situation. MATERIAL AND METHODS Non-human primates were irradiated at 8.7 Gy whole-body dose with the right arm shielded to receive 4.8 Gy. The first group of animals received G-CSF (lenograstim) injections starting 6 h after irradiation, and a second group received a combination of G-CSF (lenograstim) injections and autologous expanded hematopoietic cells. Animals were followed up for blood cell counts, circulating progenitors, and bone marrow cellularity. RESULTS No significant differences were seen between the two treatment groups, whatever the parameter observed: time to leukocyte or platelet recovery and duration and severity of aplasia. CONCLUSION Our results indicated that identical recovery kinetic was observed when irradiated animals are treated with G-CSF independently of the reinjection of ex vivo expanded autologous hematopoietic cells. Thus G-CSF injections might be chosen as a first-line therapeutic strategy in the treatment of accidental acute radiation victims.
Collapse
Affiliation(s)
- Jean-Marc Bertho
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Thérapie Cellulaire et de Radioprotection Accidentelle, Fontenay-aux-Roses, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Drouet M, Mourcin F, Grenier N, Delaunay C, Mayol JF, Lataillade JJ, Peinnequin A, Hérodin F. Mesenchymal stem cells rescue CD34+ cells from radiation-induced apoptosis and sustain hematopoietic reconstitution after coculture and cografting in lethally irradiated baboons: is autologous stem cell therapy in nuclear accident settings hype or reality? Bone Marrow Transplant 2005; 35:1201-9. [PMID: 15821761 DOI: 10.1038/sj.bmt.1704970] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autologous stem cell therapy (ACT) has been proposed to prevent irradiated victims from bone marrow (BM) aplasia by grafting hematopoietic stem and progenitor cells (HSPCs) collected early after damage, provided that a functional graft of sufficient size could be produced ex vivo. To address this issue, we set up a baboon model of cell therapy in which autologous peripheral blood HSPCs collected before lethal total body irradiation were irradiated in vitro (2.5 Gy, D0 1 Gy) to mimic the cell damage, cultured in small numbers for a week in a serum-free medium in the presence of antiapoptotic cytokines and mesenchymal stem cells (MSCs) and then cografted. Our study shows that baboons cografted with expanded cells issued from 0.75 and 1 x 10(6)/kg irradiated CD34+ cells and MSCs (n=2) exhibited a stable long-term multilineage engraftment. Hematopoietic recovery became uncertain when reducing the CD34+ cell input (0.4 x 10(6)/kg CD34+ cells; n=3). However, platelet recovery was accelerated in all surviving cografted animals, when compared with baboons transplanted with unirradiated, unmanipulated CD34+ cells (0.5-1 x 10(6)/kg, n=4). Baboons grafted with MSCs alone (n=3) did not recover. In all cases, the nonhematopoietic toxicity remained huge. This baboon study suggests that ACT feasibility is limited.
Collapse
Affiliation(s)
- M Drouet
- Centre de Recherches du Service de Santé des Armées, La Tronche, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bertho JM, Prat M, Frick J, Demarquay C, Gaugler MH, Dudoignon N, Clairand I, Chapel A, Gorin NC, Thierry D, Gourmelon P. Application of autologous hematopoietic cell therapy to a nonhuman primate model of heterogeneous high-dose irradiation. Radiat Res 2005; 163:557-70. [PMID: 15850418 DOI: 10.1667/rr3352] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We developed a model of heterogeneous irradiation in a nonhuman primate to test the feasibility of autologous hematopoietic cell therapy for the treatment of radiation accident victims. Animals were irradiated either with 8 Gy to the body with the right arm shielded to obtain 3.4 Gy irradiation or with 10 Gy total body and 4.4 Gy to the arm. Bone marrow mononuclear cells were harvested either before irradiation or after irradiation from an underexposed area of the arm and were expanded in previously defined culture conditions. We showed that hematopoietic cells harvested after irradiation were able to expand and to engraft when reinjected 7 days after irradiation. Recovery was observed in all 8-Gy-irradiated animals, and evidence for a partial recovery was observed in 10-Gy-irradiated animals. However, in 10-Gy-irradiated animals, digestive disease was observed from day 16 and resulted in the death of two animals. Immunohistological examinations showed damage to the intestine, lungs, liver and kidneys and suggested radiation damage to endothelial cells. Overall, our results provide evidence that such an in vivo model of heterogeneous irradiation may be representative of accidental radiation exposures and may help to define the efficacy of therapeutic interventions such as autologous cell therapy in radiation accident victims.
Collapse
Affiliation(s)
- Jean-Marc Bertho
- Institut de Radioprotection et de Sûreté Nucléaire, Département de Radioprotection de l'Homme, Laboratoire de Thérapie Cellulaire et de Radioprotection Accidentelle, Fontenay-aux-Roses, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thierry D, Bertho JM, Chapel A, Gourmelon P. Cell therapy for the treatment of accidental radiation overexposure. Br J Radiol 2005. [DOI: 10.1259/bjr/90209767] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
18
|
Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, Frick J, Demarquay C, Cuvelier F, Mathieu E, Trompier F, Dudoignon N, Germain C, Mazurier C, Aigueperse J, Borneman J, Gorin NC, Gourmelon P, Thierry D. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med 2003; 5:1028-38. [PMID: 14661178 DOI: 10.1002/jgm.452] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies have suggested that ex vivo expansion of autologous hematopoietic cells could be a therapy of choice for the treatment of bone marrow failure. We investigated the potential of a combined infusion of autologous ex vivo expanded hematopoietic cells with mesenchymal (MSCs) for the treatment of multi-organ failure syndrome following irradiation in a non-human primate model. METHODS Hematopoietic cells and MSCs were expanded from bone marrow aspirates. MSCs were transduced with the gene encoding for the green fluorescent protein (e-GFP), in order to track them following infusion. Twelve animals were studied. Nine animals received total-body irradiation at 8 Gy from a neutron/gamma source thus resulting in heterogeneous exposure; three animals were sham-irradiated. The animals were treated with expanded hematopoietic stem cells and MSCs, expanded hematopoietic stem cells alone, or MSCs alone. Unmanipulated bone marrow cell transplants were used as controls. RESULTS Depending on the neutron/gamma ratio, an acute radiation sickness of varying severity but of similar nature resulted. GFP-labeled cells were found in the injured muscle, skin, bone marrow and gut of the treated animals via PCR up to 82 days post-infusion. CONCLUSIONS This is the first evidence of expanded MSCs homing in numerous tissues following a severe multi-organ injury in primates. Localization of the transduced MSCs correlated to the severity and geometry of irradiation. A repair process was observed in various tissues. The plasticity potential of the MSCs and their contribution to the repair process in vivo remains to be studied.
Collapse
Affiliation(s)
- Alain Chapel
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN/DPHD/ SARAM, Fontenay aux roses, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|