Ol'shevskaya VA, Zaitsev AV, Luzgina VN, Kondratieva TT, Ivanov OG, Kononova EG, Petrovskii PV, Mironov AF, Kalinin VN, Hofmann J, Shtil AA. Novel boronated derivatives of 5,10,15,20-tetraphenylporphyrin: synthesis and toxicity for drug-resistant tumor cells.
Bioorg Med Chem 2005;
14:109-20. [PMID:
16185886 DOI:
10.1016/j.bmc.2005.07.067]
[Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/27/2005] [Accepted: 07/29/2005] [Indexed: 11/19/2022]
Abstract
We have developed the synthesis of boronated porphyrins for potential application in cancer treatment, based on the functional derivatives of 5,10,15,20-tetraphenylporphyrin. Boronated amide derivatives starting from 5,10,15,20-tetra(p-aminophenyl)porphyrin and 9-o- and 9-m-carborane carboxylic acid chlorides were prepared. Also, the reaction of 2-formyl-5,10,15,20-tetraphenylporphyrin with closo-C-lithium-o- and m-carboranes, as well as with closo-C-lithium monocarbon carborane, yielded neutral and anionic boronated hydroxy derivatives of 5,10,15,20-tetraphenylporphyrin, respectively. Water-soluble forms of neutral compounds were prepared by deboronation of closo-polyhedra with Bu4NF into nido-7,8- and nido-7,9-dicarbaundecaborate anions. Monocarbon carborane conjugated with copper (II) complex of 5,10,15,20-tetraphenylporphyrin was active for a variety of tumor cell lines (IC50 approximately 5 microM after 48-72 h of exposure) but was inert for non-malignant fibroblasts at up to 100 microM. At low micromolar concentrations, this compound caused the death of cells that express P-glycoprotein and other mechanisms of resistance to conventional anticancer drugs.
Collapse