1
|
Green HJ, Batada A, Cole B, Burnett ME, Kollias H, McKay S, Roy B, Schertzer JD, Smith IC, Tupling S. Muscle cellular properties in the ice hockey player: a model for investigating overtraining? Can J Physiol Pharmacol 2012; 90:567-78. [PMID: 22471993 DOI: 10.1139/y2012-017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we hypothesized that athletes involved in 5-6 months of sprint-type training would display higher levels of proteins and processes involved in muscle energy supply and utilization. Tissue was sampled from the vastus lateralis of 13 elite ice hockey players (peak oxygen consumption = 51.8 ± 1.3 mL·kg(-1)·min(-1); mean ± standard error) at the end of a season (POST) and compared with samples from 8 controls (peak oxygen consumption = 45.5 ± 1.4 mL·kg(-1)·min(-1)) (CON). Compared with CON, higher activities were observed in POST (p < 0.05) only for succinic dehydrogenase (3.32 ± 0.16 mol·(mg protein)(-1)·min(-1) vs. 4.10 ± 0.11 mol·(mg protein)(-1)·min(-1)) and hexokinase (0.73 ± 0.05 mol·(mg protein)(-1)·min(-1) vs. 0.90 ± 0.05mol·(mg protein)(-1)·min(-1)) but not for phosphorylase, phosphofructokinase, and creatine phosphokinase. No differences were found in Na(+),K(+)-ATPase concentration (β(max): 262 ± 36 pmol·(g wet weight)(-1) vs. 275 ± 27 pmol·(g wet weight)(-1)) and the maximal activity of the sarcoplasmic reticulum Ca(2+)-ATPase (98.1 ± 6.1 µmol·(g protein)(-1)·min(-1) vs. 102 ± 3.3 µmol·(g protein)(-1)·min(-1)). Cross-sectional area was lower (p < 0.05) in POST but only for the type IIA fibres (6312 ± 684 μm(2) vs. 5512 ± 335 μm(2)), while the number of capillary counts per fibre and the capillary to fibre area ratio were generally higher (p < 0.05). These findings suggest that elite trained ice hockey players display elevations only in support of glucose-based aerobic metabolism that occur in the absence of alterations in excitation-contraction processes.
Collapse
Affiliation(s)
- Howard J Green
- Department of Kinesiology, University of Waterloo, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Green HJ, Batada A, Cole B, Burnett ME, Kollias H, McKay S, Roy B, Schertzer J, Smith I, Tupling S. Cellular responses in skeletal muscle to a season of ice hockey. Appl Physiol Nutr Metab 2010; 35:657-70. [PMID: 20962922 DOI: 10.1139/h10-060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We hypothesized that a season of ice hockey would result in extensive remodeling of muscle. Tissue sampled from the vastus lateralis of 15 players (age = 20.6 ± 0.4 years; mean ± SE) prior to (PRE) and following (POST) a season was used to characterize specific adaptations. Measurement of representative metabolic pathway enzymes indicated higher maximal activities in POST than in PRE (p < 0.05) for succinic dehydrogenase (3.26 ± 0.31 vs. 3.91 ± 0.11 mol mg protein(-1) min(-1)), citrate synthase (7.26 ± 0.70 vs. 8.70 ± 0.55 mol mg protein(-1) min(-1)), and phosphofructokinase (12.8 ± 1.3 vs. 14.4 ± 0.96 mol mg protein(-1) min(-1)) only. The season resulted in an increase in Na+-K+-ATPase concentration (253 ± 6.3 vs. 265 ± 6.0 pmol g(-1) wet weight), a decrease (p < 0.05) in maximal activity of the sarcoplasmic reticulum Ca2+-ATPase (107 ± 4.2 micromol g protein(-1) min(-1) vs. 92.0 ± 4.6 micromol g protein(-1) min(-1)), and no change in the distribution (%) of fibre types. A smaller (p < 0.05) cross-sectional area (CSA) for both type I (-11.7%) and type IIA (-18.2%) fibres and a higher (p < 0.05) capillary count/CSA for type I (+17.9%) and type IIA (+17.2%) were also found over the season. No changes were found in peak oxygen consumption (51.4 ± 1.2 mL kg(-1) min(-1) vs. 52.3 ± 1.3 mL kg(-1) min(-1)). The results suggest, based on the alterations in oxidative and perfusion potentials and muscle mass, that the dominant adaptations are in support of oxidative metabolism, which occurs at the expense of fibre CSA and possibly force-generating potential.
Collapse
Affiliation(s)
- Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
The ascent of humans to the summits of the highest peaks on Earth initiated a spurt of explorations into the physiological consequences of physical activity at altitude. The past three decades have demonstrated that the resetting of respiratory and cardiovascular control with chronic exposure to altitudes above 4000 m is accompanied by important structural-functional adjustments of skeletal muscle. The fully altitude-adapted phenotype preserves energy charge at reduced aerobic capacity through the promotion of anaerobic substrate flux and tighter metabolic control, often at the expense of muscle mass. In seeming contrast, intense physical activity at moderate hypoxia (2500 to 4000 m) modifies this response in both low and high altitude natives through metabolic compensation by elevating local aerobic capacity and possibly preventing muscle fiber atrophy. The combined use of classical morphometry and contemporary proteomic technology provides a highly resolved picture of the temporal control of hypoxia-induced muscular adaptations. The muscle proteome signature identifies mitochondrial autophagy and protein degradation as prime adaptive mechanisms to passive altitude exposure and ascent to extreme altitude. Protein measures also explain the lactate paradox by a sparing of glycolytic enzymes from general muscle wasting. Enhanced mitochondrial and angiogenic protein expression in human muscle with exercise up to 4000 m is related to the reduction in intramuscular oxygen content below 1% (8 torr), when the master regulator of hypoxia-dependent gene expression, HIF-1alpha, is stabilized. Accordingly, it is proposed here that the catabolic consequences of chronic hypoxia exposure reflect the insufficient activation of hypoxia-sensitive signaling and the suppression of energy-consuming protein translation.
Collapse
Affiliation(s)
- Martin Flueck
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
4
|
Overton JD, Adams GS, McCall RD, Kinsey ST. High energy phosphate concentrations and AMPK phosphorylation in skeletal muscle from mice with inherited differences in hypoxic exercise tolerance. Comp Biochem Physiol A Mol Integr Physiol 2008; 152:478-85. [PMID: 19100334 DOI: 10.1016/j.cbpa.2008.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/18/2022]
Abstract
The effect of chronic hypobaric hypoxia (1/2 atmospheric pressure) on high energy phosphate (HEP) compounds was investigated in slow (soleus; SOL) and fast twitch (extensor digitorum longus; EDL) muscle from 3 strains of mice with large differences in hypoxic exercise tolerance (HET). Phosphocreatine concentration ([PCr]) decreased 16-29% following hypoxia in EDL and SOL in all strains, while [ADP] and [AMP] increased. In the EDL, HET was negatively correlated with the PCr/ATP ratio and positively correlated with the ATP/P(i) ratio. The free energy of ATP hydrolysis (DeltaG(obs)) remained constant despite the substantial changes that occurred in HEP profiles. The alteration of HEP set points and preservation of DeltaG(obs) are consistent with the notion that (1) maximal rates of steady-state ATP turnover are reduced under hypoxia, and (2) HEP perturbations during rest to work transitions are reduced in skeletal muscle from hypoxia acclimated animals. We therefore expected a lower phosphorylation ratio of AMP-activated protein kinase (AMPK-P/AMPK) during stimulation in hypoxic acclimated animals. However, neither the resting nor stimulated AMPK-P/AMPK was influenced by hypoxia, although there were significant differences among strains.
Collapse
Affiliation(s)
- Jeffrey D Overton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-5915, USA
| | | | | | | |
Collapse
|
5
|
Green HJ, Burnett M, Duhamel TA, D'Arsigny C, O'Donnell DE, Webb KA, Ouyang J. Abnormal sarcoplasmic reticulum Ca2+-sequestering properties in skeletal muscle in chronic obstructive pulmonary disease. Am J Physiol Cell Physiol 2008; 295:C350-7. [DOI: 10.1152/ajpcell.00224.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the hypothesis that alterations in sarcoplasmic reticulum (SR) Ca2+-cycling properties would occur in skeletal muscle in patients with moderate to severe chronic obstructive pulmonary disease (COPD). To investigate this hypothesis, tissue samples were obtained from the vastus lateralis of 8 patients with COPD [age 65.6 ± 3.2 yr; forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) = 44 ± 2%; mean ± SE] and 10 healthy age-matched controls (CON, age 67.5 ± 2.5 yr; FEV1/FVC = 77 ± 2%), and homogenates were analyzed for a wide range of SR properties. Compared with CON, COPD displayed (in μmol·g protein−1·min−1) a 16% lower maximal Ca2+-ATPase activity [maximal velocity ( Vmax), 158 ± 10 vs. 133 ± 7, P < 0.05] and a 17% lower Ca2+uptake (4.65 ± 0.039 vs. 3.85 ± 0.26, P < 0.05) that occurred in the absence of differences in Ca2+release. The lower Vmaxin COPD was also accompanied by an 11% lower ( P < 0.05) Ca2+sensitivity, as measured by the Hill coefficient (defined as the relationship between Ca2+-ATPase activity and free cytosolic Ca2+concentration for 10–90% Vmax). For the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) isoforms, SERCA1a was 16% higher ( P < 0.05) and SERCA2a was 14% lower ( P < 0.05) in COPD. It is concluded that moderate to severe COPD results in abnormalities in SR Ca2+-ATPase properties that cannot be explained by changes in the SERCA isoform phenotypes. The reduced catalytic properties of SERCA in COPD suggest a disturbance in Ca2+cycling, possibly resulting in impairment in Ca2+-mediated mechanical function and/or second messenger regulated processes.
Collapse
|
6
|
Roels B, Reggiani C, Reboul C, Lionne C, Iorga B, Obert P, Tanguy S, Gibault A, Jougla A, Travers F, Millet GP, Candau R. Paradoxical effects of endurance training and chronic hypoxia on myofibrillar ATPase activity. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1911-8. [PMID: 18417650 DOI: 10.1152/ajpregu.00210.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to determine the changes in soleus myofibrillar ATPase (m-ATPase) activity and myosin heavy chain (MHC) isoform expression after endurance training and/or chronic hypoxic exposure. Dark Agouti rats were randomly divided into four groups: control, normoxic sedentary (N; n = 14), normoxic endurance trained (NT; n = 14), hypoxic sedentary (H; n = 10), and hypoxic endurance trained (HT; n = 14). Rats lived and trained in normoxia at 760 mmHg (N and NT) or hypobaric hypoxia at 550 mmHg (approximately 2,800 m) (H and HT). m-ATPase activity was measured by rapid flow quench technique; myosin subunits were analyzed with mono- and two-dimensional gel electrophoresis. Endurance training significantly increased m-ATPase (P < 0.01), although an increase in MHC-I content occurred (P < 0.01). In spite of slow-to-fast transitions in MHC isoform distribution in chronic hypoxia (P < 0.05) no increase in m-ATPase was observed. The rate constants of m-ATPase were 0.0350 +/- 0.0023 s(-1) and 0.047 +/- 0.0050 s(-1) for N and NT and 0.033 +/- 0.0021 s(-1) and 0.038 +/- 0.0032 s(-1) for H and HT. Thus, dissociation between variations in m-ATPase and changes in MHC isoform expression was observed. Changes in fraction of active myosin heads, in myosin light chain isoform (MLC) distribution or in MLC phosphorylation, could not explain the variations in m-ATPase. Myosin posttranslational modifications or changes in other myofibrillar proteins may therefore be responsible for the observed variations in m-ATPase activity.
Collapse
Affiliation(s)
- B Roels
- UMR 866 Institut National de la Recherche Agronomique, Faculty of Sport Sciences, University of Montpellier 1, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sarcoplasmic reticulum ATPase activity in type I and II skeletal muscle fibres of chronic heart failure patients. Int J Cardiol 2008; 133:185-90. [PMID: 18279980 DOI: 10.1016/j.ijcard.2007.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/11/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND Reduced exercise tolerance and muscle weakness are present in patients with CHF. Altered metabolism, histology and function in skeletal muscle of patients with CHF have been reported. The sarcoplasmic reticulum (SR) has control of Ca(++) release and uptake required for contraction and relaxation, respectively, and uses a considerable amount of energy. Little is known about SR alterations in CHF. We determined sarcoplasmic reticulum adenosine triphosphatase (SR ATPase) activity in different types of skeletal muscle fibres of CHF patients. METHODS SR ATPase activity, succinate dehydrogenase (SDH) activity and myofibrillar adenosine triphosphatase (M ATPase) activity in single fibres of the vastus lateralis muscle in 16 CHF patients and 5 controls was determined using quantitative enzyme histochemistry. RESULTS SR ATPase activity of type II skeletal muscle fibers was significantly higher compared to type I fibres. SR ATPase activity in type II skeletal muscle fibres of CHF patients was higher than in control subjects. CONCLUSION Increased skeletal muscle SR ATPase activity contributes to reduced exercise tolerance in CHF patients.
Collapse
|
8
|
Marconi C, Marzorati M, Cerretelli P. Work capacity of permanent residents of high altitude. High Alt Med Biol 2006; 7:105-15. [PMID: 16764524 DOI: 10.1089/ham.2006.7.105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tibetan and Andean natives at altitude have allegedly a greater work capacity and stand fatigue better than acclimatized lowlanders. The principal aim of the present review is to establish whether convincing experimental evidence supports this belief and, should this be the case, to analyze the possible underlying mechanisms. The superior work capacity of high altitude natives is not based on differences in maximum aerobic power (V(O2 peak)), mL kg(-1)min(-1)). In fact, average V (O2 peak) of both Tibetan and Andean natives at altitude is only slightly, although not significantly, higher than that of Asian or Caucasian lowlanders resident for more than 1 yr between 3400 and 4700 m (Tibetans, n = 152, vs. Chinese Hans, n = 116: 42.4 +/- 3.4 vs. 39.2 +/- 2.6 mL kg(-1)min(-1), mean +/- SE; Andeans, n = 116, vs. Caucasians, n = 70: 47.1 +/- 1.7 vs. 41.6 +/- 1.2 mL kg(-1)min(-1)). However, compared to acclimatized lowlanders, Tibetans appear to be characterized by a better economy of cycling, walking, and running on a treadmill. This is possibly due to metabolic adaptations, such as increased muscle myoglobin content and antioxidant defense. All together, the latter changes may enhance the efficiency of the muscle oxidative metabolic machinery, thereby supporting a better prolonged submaximal performance capacity compared to lowlanders, despite equal V(O2 peak). With regard to Andeans, data on exercise efficiency is scanty and controversial and, at present, no conclusion can be drawn as to the origin of their superior performance.
Collapse
|
9
|
Marconi C, Marzorati M, Sciuto D, Ferri A, Cerretelli P. Economy of locomotion in high-altitude Tibetan migrants exposed to normoxia. J Physiol 2005; 569:667-75. [PMID: 16179365 PMCID: PMC1464256 DOI: 10.1113/jphysiol.2005.094979] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
High-altitude Tibetans undergo a pattern of adaptations to chronic hypoxia characterized, among others, by a more efficient aerobic performance compared with acclimatized lowlanders. To test whether such changes may persist upon descent to moderate altitude, oxygen uptake of 17 male Tibetan natives lifelong residents at 3500-4500 m was assessed within 1 month upon migration to 1300 m. Exercise protocols were: 5 min treadmill walking at 6 km h(-1) on increasing inclines from +5 to +15% and 5 min running at 10 km h(-1) on a +5% grade. The data (mean +/- S.E.M.) were compared with those obtained on Nepali lowlanders. When walking on +10, +12.5 and +15% inclines, net V(O2) of Tibetans was 25.2 +/- 0.7, 29.1 +/- 1.1 and 31.3 +/- 0.9 ml kg(-1) min(-1), respectively, i.e. 8, 10 and 13% less (P < 0.05) than that of Nepali. At the end of the heaviest load, blood lactate concentration was lower in Tibetans than in Nepali (6.0 +/- 0.9 versus 8.9 +/- 0.6 mM; P < 0.05). During running, V(O2) of Tibetans was 35.1 +/- 0.8 versus 39.3 +/- 0.7 ml kg(-1) min(-1) (i.e. 11% less; P < 0.01). In conclusion, during submaximal walking and running at 1300 m, Tibetans are still characterized by lower aerobic energy expenditure than control subjects that is not accounted for by differences in mechanical power output and/or compensated for by anaerobic glycolysis. These findings indicate that chronic hypoxia induces metabolic adaptations whose underlying mechanisms still need to be elucidated, that persist for at least 1 month upon descent to moderate altitude.
Collapse
Affiliation(s)
- Claudio Marconi
- IBFM--National Research Council and Department of Sciences and Biomedical Technologies, University of Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
10
|
Aughey RJ, Gore CJ, Hahn AG, Garnham AP, Clark SA, Petersen AC, Roberts AD, McKenna MJ. Chronic intermittent hypoxia and incremental cycling exercise independently depress muscle in vitro maximal Na+-K+-ATPase activity in well-trained athletes. J Appl Physiol (1985) 2004; 98:186-92. [PMID: 15033968 DOI: 10.1152/japplphysiol.01335.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Athletes commonly attempt to enhance performance by training in normoxia but sleeping in hypoxia [live high and train low (LHTL)]. However, chronic hypoxia reduces muscle Na(+)-K(+)-ATPase content, whereas fatiguing contractions reduce Na(+)-K(+)-ATPase activity, which each may impair performance. We examined whether LHTL and intense exercise would decrease muscle Na(+)-K(+)-ATPase activity and whether these effects would be additive and sufficient to impair performance or plasma K(+) regulation. Thirteen subjects were randomly assigned to two fitness-matched groups, LHTL (n = 6) or control (Con, n = 7). LHTL slept at simulated moderate altitude (3,000 m, inspired O(2) fraction = 15.48%) for 23 nights and lived and trained by day under normoxic conditions in Canberra (altitude approximately 600 m). Con lived, trained, and slept in normoxia. A standardized incremental exercise test was conducted before and after LHTL. A vastus lateralis muscle biopsy was taken at rest and after exercise, before and after LHTL or Con, and analyzed for maximal Na(+)-K(+)-ATPase activity [K(+)-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase)] and Na(+)-K(+)-ATPase content ([(3)H]ouabain binding sites). 3-O-MFPase activity was decreased by -2.9 +/- 2.6% in LHTL (P < 0.05) and was depressed immediately after exercise (P < 0.05) similarly in Con and LHTL (-13.0 +/- 3.2 and -11.8 +/- 1.5%, respectively). Plasma K(+) concentration during exercise was unchanged by LHTL; [(3)H]ouabain binding was unchanged with LHTL or exercise. Peak oxygen consumption was reduced in LHTL (P < 0.05) but not in Con, whereas exercise work was unchanged in either group. Thus LHTL had a minor effect on, and incremental exercise reduced, Na(+)-K(+)-ATPase activity. However, the small LHTL-induced depression of 3-O-MFPase activity was insufficient to adversely affect either K(+) regulation or total work performed.
Collapse
Affiliation(s)
- R J Aughey
- School of Human Movement, Recreation and Performance (FO22) Victoria University of Technology, P.O. Box 14428, MCMC, Melbourne, Victoria 8001, Australia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 2002; 32:53-73. [PMID: 11772161 DOI: 10.2165/00007256-200232010-00003] [Citation(s) in RCA: 473] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While the physiological adaptations that occur following endurance training in previously sedentary and recreationally active individuals are relatively well understood, the adaptations to training in already highly trained endurance athletes remain unclear. While significant improvements in endurance performance and corresponding physiological markers are evident following submaximal endurance training in sedentary and recreationally active groups, an additional increase in submaximal training (i.e. volume) in highly trained individuals does not appear to further enhance either endurance performance or associated physiological variables [e.g. peak oxygen uptake (VO2peak), oxidative enzyme activity]. It seems that, for athletes who are already trained, improvements in endurance performance can be achieved only through high-intensity interval training (HIT). The limited research which has examined changes in muscle enzyme activity in highly trained athletes, following HIT, has revealed no change in oxidative or glycolytic enzyme activity, despite significant improvements in endurance performance (p < 0.05). Instead, an increase in skeletal muscle buffering capacity may be one mechanism responsible for an improvement in endurance performance. Changes in plasma volume, stroke volume, as well as muscle cation pumps, myoglobin, capillary density and fibre type characteristics have yet to be investigated in response to HIT with the highly trained athlete. Information relating to HIT programme optimisation in endurance athletes is also very sparse. Preliminary work using the velocity at which VO2max is achieved (V(max)) as the interval intensity, and fractions (50 to 75%) of the time to exhaustion at V(max) (T(max)) as the interval duration has been successful in eliciting improvements in performance in long-distance runners. However, V(max) and T(max) have not been used with cyclists. Instead, HIT programme optimisation research in cyclists has revealed that repeated supramaximal sprinting may be equally effective as more traditional HIT programmes for eliciting improvements in endurance performance. Further examination of the biochemical and physiological adaptations which accompany different HIT programmes, as well as investigation into the optimal HIT programme for eliciting performance enhancements in highly trained athletes is required.
Collapse
Affiliation(s)
- Paul B Laursen
- School of Human Movement Studies, University of Queensland, Brisbane, Australia.
| | | |
Collapse
|
12
|
Abstract
Exposure to altitude results in a reduction in partial pressure of oxygen in the arterial blood and a reduction in oxygen content. In an attempt to maintain aerobic metabolism during increased effort, a series of acclimatization responses occur. Among the most conspicuous of these responses is an increase in hemoglobin (Hb) concentration. The increase in Hb has been construed as the fundamental adaptation enabling increases in aerobic power and performance to occur on return to sea-level. However, the use of altitude to boost training adaptations and improve elite sea-level performance, although tantalizing, is largely unproven. The reasons appear to be many, ranging from the poor experimental designs employed, to the numerous strategies designed to manipulate the altitude experience and the large inter-individual differences in response patterns. However, other factors may also be important. Acclimatization has also been shown to induce alteration in selected properties of the muscle cell, some of which may be counterproductive. The processes involved in cation cycling, as an example, appear to be down-regulated. Changes in these processes could impair certain types of performance.
Collapse
Affiliation(s)
- H J Green
- Department of Kinesiology, University of Waterloo, Ontario
| |
Collapse
|