1
|
A homotetrameric hemoglobin expressed in alveolar epithelial cells increases blood oxygenation in high-altitude plateau pika (Ochotona curzoniae). Cell Rep 2022; 41:111446. [DOI: 10.1016/j.celrep.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
|
2
|
Shang P, Zhang B, Li P, Ahmed Z, Hu X, Chamba Y, Zhang H. Plateau Adaptation Gene Analyses Reveal Transcriptomic, Proteomic, and Dual Omics Expression in the Lung Tissues of Tibetan and Yorkshire Pigs. Animals (Basel) 2022; 12:ani12151919. [PMID: 35953907 PMCID: PMC9367445 DOI: 10.3390/ani12151919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Elevated environments such as plateaus are often classified as low oxygen environments. The hypoxic adaptation mechanisms utilized by organisms in these conditions are not well understood. To address this, the differentially expressed genes (DEGs) involved in hypoxia adaptation were assessed using two pig breeds (Tibetan pig [TP] and Yorkshire sow [YY]). Genes related to lung tissue responses to hypoxia were assessed using transcriptomic (using RNA-seq) and proteomic (using iTRAQ) analysis. A total of 1021 DEGs were screened out. In the iTRAQ omics data, a total of 22,100 peptides were obtained and 4518 proteins were found after filtering. A total of 271 differentially expressed proteins [DEPs] were screened using the conditions of p < 0.05; FC ≤ 0.833; and FC ≥ 1.2. A total of 14 DEGs at the mRNA and protein levels were identified and found to be associated with regulation of the inflammatory response; blood particles; and MAPK cascade response regulation. Among the DEGs, six were associated with hypoxia adaptation function (mitochondria and glycolysis) in pigs. The results of this study identify novel candidate genes involved in porcine hypoxia adaptation mechanisms.
Collapse
Affiliation(s)
- Peng Shang
- Laboratory National Engineering for Animal Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China; (P.S.); (B.Z.); (P.L.); (X.H.)
- Department of animal husbandry, College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China
| | - Bo Zhang
- Laboratory National Engineering for Animal Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China; (P.S.); (B.Z.); (P.L.); (X.H.)
| | - Pan Li
- Laboratory National Engineering for Animal Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China; (P.S.); (B.Z.); (P.L.); (X.H.)
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Xiaoxiang Hu
- Laboratory National Engineering for Animal Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China; (P.S.); (B.Z.); (P.L.); (X.H.)
| | - Yangzom Chamba
- Department of animal husbandry, College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China
- Correspondence: (Y.C.); (H.Z.)
| | - Hao Zhang
- Laboratory National Engineering for Animal Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China; (P.S.); (B.Z.); (P.L.); (X.H.)
- Correspondence: (Y.C.); (H.Z.)
| |
Collapse
|
3
|
Liu D, Song P, Yan J, Wang H, Cai Z, Xie J, Zhang T. Gut Microbiome Changes in Captive Plateau Zokors ( Eospalax baileyi). Evol Bioinform Online 2021; 17:1176934321996353. [PMID: 34103885 PMCID: PMC8164558 DOI: 10.1177/1176934321996353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Wild-caught animals must cope with drastic lifestyle and dietary changes after being induced to captivity. How the gut microbiome structure of these animals will change in response receives increasing attention. The plateau zokor (Eospalax baileyi), a typic subterranean rodent endemic to the Qinghai-Tibet plateau, spends almost the whole life underground and is well adapted to the environmental pressures of both plateau and underground. However, how the gut microbiome of the plateau zokor will change in response to captivity has not been reported to date. This study compared the microbial community structure and functions of 22 plateau zokors before (the WS group) and after being kept in captivity for 15 days (the LS group, fed on carrots) using the 16S rRNA gene via high-throughput sequencing technology. The results showed that the LS group retained 973 of the 977 operational taxonomic units (OTUs) in the WS group, and no new OTUs were found in the LS group. The dominant bacterial phyla were Bacteroides and Firmicutes in both groups. In alpha diversity analysis, the Shannon, Sobs, and ACE indexes of the LS group were significantly lower than those of the WS group. A remarkable difference (P < 0.01) between groups was also detected in beta diversity analysis. The UPGMA clustering, NMDS, PCoA, and Anosim results all showed that the intergroup difference was significantly greater than the intragroup difference. And compared with the WS group, the intragroup difference of the gut microbiota in the LS group was much larger, which failed to support the assumption that similar diets should drive convergence of gut microbial communities. PICRUSt revealed that although some functional categories displayed significant differences between groups, the relative abundances of these categories were very close in both groups. Based on all the results, we conclude that as plateau zokors enter captivity for a short time, although the relative abundances of different gut microbiota categories shifted significantly, they can maintain almost all the OTUs and the functions of the gut microbiota in the wild. So, the use of wild-caught plateau zokors in gut microbial studies is acceptable if the time in captivity is short.
Collapse
Affiliation(s)
- Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.,Kunlun College of Qinghai University, Xining, Qinghai, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingyan Yan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Haijing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Jiuxiang Xie
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| |
Collapse
|
4
|
Zhang JB, Wang L, Chen J, Wang ZY, Cao M, Yie SM, Yang H, Yao XQ, Zeng Y, Yang YC, Xie CB, Zhao TQ. Frequency of Polycythemia and Other Abnormalities in a Tibetan Herdsmen Population Residing in the Kham Area of Sichuan Province, China. Wilderness Environ Med 2018; 29:18-28. [PMID: 29338990 DOI: 10.1016/j.wem.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Jian-Bo Zhang
- Core Laboratory, (Drs Zhang, Chen, Z Wang, Cao, and Yie).
| | - Lin Wang
- Health Management Center, (Drs L Wang and H Yang, Mr Yao, and Ms Zeng)
| | - Jie Chen
- Core Laboratory, (Drs Zhang, Chen, Z Wang, Cao, and Yie)
| | - Zhi-Ying Wang
- Core Laboratory, (Drs Zhang, Chen, Z Wang, Cao, and Yie)
| | - Mei Cao
- Core Laboratory, (Drs Zhang, Chen, Z Wang, Cao, and Yie)
| | - Shang-Mian Yie
- Core Laboratory, (Drs Zhang, Chen, Z Wang, Cao, and Yie)
| | - Hua Yang
- Health Management Center, (Drs L Wang and H Yang, Mr Yao, and Ms Zeng)
| | - Xiao-Qin Yao
- Health Management Center, (Drs L Wang and H Yang, Mr Yao, and Ms Zeng)
| | - Yi Zeng
- Health Management Center, (Drs L Wang and H Yang, Mr Yao, and Ms Zeng)
| | - Yong-Chang Yang
- Clinical Laboratory, (Drs L Wang and H Yang, Mr Yao, and Ms Zeng); Sichuan Provincial People's Hospital, Chengdu, China
| | - Chun-Bao Xie
- Clinical Laboratory, (Drs L Wang and H Yang, Mr Yao, and Ms Zeng); Sichuan Provincial People's Hospital, Chengdu, China
| | - Tai-Qiang Zhao
- Clinical Laboratory, (Drs L Wang and H Yang, Mr Yao, and Ms Zeng); Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
5
|
Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080773. [PMID: 27490559 PMCID: PMC4997459 DOI: 10.3390/ijerph13080773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
Abstract
Sperm specific lactate dehydrogenases (LDH-C4) is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, Ldh-c was originally thought to be expressed only in testes and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia-tolerant mammal living 3000–5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testes and sperm, but also in the somatic tissues of plateau pika. To reveal the effect of hypoxia on pika Ldh-c expression, we investigated the mRNA and protein level of Ldh-c as well as the biochemical index of anaerobic glycolysis in pika somatic tissues at the altitudes of 2200 m, 3200 m and 3900 m. Our results showed that mRNA and protein expression levels of Ldh-c in the tissues of pika’s heart, liver, brain and skeletal muscle were increased significantly from 2200 m to 3200 m, but had no difference from 3200 m to 3900 m; the activities of LDH and the contents of lactate showed no difference from 2200 m to 3200 m, but were increased significantly from 3200 m to 3900 m. Hypoxia up-regulated and maintained the expression levels of Ldh-c in the pika somatic cells. Under the hypoxia condition, plateau pikas increased anaerobic glycolysis in somatic cells by LDH-C4, and that may have reduced their dependence on oxygen and enhanced their adaptation to the hypoxic environment.
Collapse
|
6
|
Mitochondrial haplogroup M9a1a1c1b is associated with hypoxic adaptation in the Tibetans. J Hum Genet 2016; 61:1021-1026. [PMID: 27465874 DOI: 10.1038/jhg.2016.95] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 11/08/2022]
Abstract
While hypoxic environment at high altitude remains a major challenge for travelers from low-altitude areas, Tibetans have adapted to the high-altitude environment. Mitochondria are the energy conversion and supplement centers in eukaryotic cells. In recent years, studies have found that the diversity of the mitochondrial genome may have a role in the adaptation to hypoxia in Tibetans. In this study, mitochondrial haplogroup classification and variant genotyping were performed in Tibetan and Han Chinese populations living at different altitudes. The frequencies of mitochondrial haplogroups B and M7 in the high-altitude population were significantly lower compared with those in the low-altitude population (P=0.003 and 0.029, respectively), whereas the frequencies of haplogroups G and M9a1a1c1b in the high-altitude group were significantly higher compared with those in the low-altitude group (P=0.01 and 0.002, respectively). The frequencies of T3394C and G7697A, which are the definition sites of haplogroup M9a1a1c1b, were significantly higher in the high-altitude group compared with that in the low-altitude group (P=0.012 and 0.02, respectively). Our results suggest that mitochondrial haplogroups B and M7 are associated with inadaptability to hypoxic environments, whereas haplogroups G and M9a1a1c1b may be associated with hypoxic adaptation. In particular, the T3394C and G7697A variants on haplogroup M9a1a1c1b may be the primary cause of adaptation to hypoxia.
Collapse
|
7
|
Pamenter ME, Powell FL. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol 2016; 6:1345-85. [PMID: 27347896 DOI: 10.1002/cphy.c150026] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. © 2016 American Physiological Society. Compr Physiol 6:1345-1385, 2016.
Collapse
Affiliation(s)
| | - Frank L Powell
- Physiology Division, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Yan Y, Wang C, Zhou W, Shi Y, Guo P, Liu Y, Wang J, Zhang CY, Zhang C. Elevation of Circulating miR-210-3p in High-Altitude Hypoxic Environment. Front Physiol 2016; 7:84. [PMID: 27014085 PMCID: PMC4781857 DOI: 10.3389/fphys.2016.00084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
Background: The induction of miR-210-3p, a master hypoxamir, is a consistent feature of the hypoxic response in both normal and malignant cells. However, whether miR-210-3p acts as a circulating factor in response to a hypoxic environment remains unknown. The current study aimed to examine the effect of a high-altitude hypoxic environment on circulating miR-210-3p. Methods: We examined and compared the levels of miR-210-3p using TaqMan-based qRT-PCR in both peripheral blood cells and plasma from 84 ethnic Chinese Tibetans residing at 3560 m, 46 newly arrived migrant Han Chinese (Tibet Han) and 82 Han Chinese residing at 8.9 m (Nanjing Han). Furthermore, we analyzed the correlations of miR-210-3p with hematological indices. Results: The relative concentrations of miR-210-3p to internal reference U6 in blood cells were significantly higher in the Tibet Han group (1.01 ± 0.11, P < 0.001) and in the Tibetan group (1.17 ± 0.09, P < 0.001) than in the Nanjing Han group (0.51 ± 0.04). The absolute concentrations of plasma miR-210-3p were also markedly elevated in the Tibet Han group (503.54 ± 42.95 fmol/L, P = 0.004) and in the Tibetan group (557.78 ± 39.84 fmol/L, P < 0.001) compared to the Nanjing Han group (358.39 ± 16.16 fmol/L). However, in both blood cells and plasma, miR-210-3p levels were not significantly different between the Tibet Han group and the Tibetan group (P = 0.280, P = 0.620, respectively). Plasma miR-210-3p concentrations were positively correlated with miR-210-3p levels in blood cells (r = 0.192, P = 0.005). Furthermore, miR-210-3p levels in both blood cells and plasma showed strong positive correlations with red blood cell counts and hemoglobin and hematocrit values. Conclusion: These data demonstrated, for the first time, that miR-210-3p might act as a circulating factor in response to hypoxic environments and could be associated with human adaptation to life at high altitudes.
Collapse
Affiliation(s)
- Yan Yan
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing UniversityNanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing UniversityNanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Wanqing Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University Nanjing, China
| | - Yonghui Shi
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing University Nanjing, China
| | - Pengtao Guo
- Department of Clinical Laboratory, The Forty-First Hospital of PLA Nêdong, China
| | - Yuxiu Liu
- Department of Medical Statistics, Nanjing University School of Medicine, Jinling Hospital, Nanjing University Nanjing, China
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing University Nanjing, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University Nanjing, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Medicine, Nanjing UniversityNanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences, School of Life Sciences, Nanjing UniversityNanjing, China
| |
Collapse
|
9
|
Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing. Sci Rep 2015; 5:14682. [PMID: 26443005 PMCID: PMC4595765 DOI: 10.1038/srep14682] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/07/2015] [Indexed: 02/08/2023] Open
Abstract
Knowledge about the impact of altitude and ethnicity on human gut microbiota is currently limited. In this study, fecal microbiota from 12 Tibetans (T group), 11 Chinese Han living in Tibet (HH group) and 12 Chinese Han living in Shaanxi province (LH group) were profiled by 454 pyrosequencing. Analysis of UniFrac principal coordinates showed significant structural changes in fecal microbiota among the three groups. There were significant differences in the composition of fecal microbiota among the three groups at phylum and genus levels. At the phylum level, the fecal samples of HH and T groups had higher relative abundances of Firmicutes, whereas the LH group had a higher relative abundance of Bacteroidetes. These changes at the phylum level reflected different dominant genus compositions. Compared with the LH group, changes of Firmicutes and Bacteroidetes were mainly due to a significant decrease of Prevotella in the HH group and were primarily attributable to significant decreases of Bacteroides and Prevotella as well as a significant increase of Catenibacterium in the T group. In conclusion, our results suggest that high altitude may contribute to shaping human gut microbiota. Genetic and dietary factors may also explain the different microbiota compositions between Tibetan and Chinese Han.
Collapse
|
10
|
Guan W, Ga Q, Li R, Bai ZZ, Wuren T, Wang J, Yang YZ, Li YH, Ge RL. Sleep disturbances in long-term immigrants with chronic mountain sickness: A comparison with healthy immigrants at high altitude. Respir Physiol Neurobiol 2015; 206:4-10. [DOI: 10.1016/j.resp.2014.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
11
|
Willmann G, Schatz A, Fischer MD, Schommer K, Zrenner E, Bartz-Schmidt KU, Gekeler F, Gekeler K. Exposure to High Altitude Alters Tear Film Osmolarity and Breakup Time. High Alt Med Biol 2014; 15:203-7. [DOI: 10.1089/ham.2013.1103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gabriel Willmann
- Katharinenhospital, Department of Ophthalmology, Stuttgart, Germany
- Centre for Ophthalmology University of Tübingen, Germany
| | - Andreas Schatz
- Katharinenhospital, Department of Ophthalmology, Stuttgart, Germany
- Centre for Ophthalmology University of Tübingen, Germany
| | - M. Dominik Fischer
- Centre for Ophthalmology University of Tübingen, Germany
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Kai Schommer
- Department of Sports Medicine, Medical Clinic, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Florian Gekeler
- Katharinenhospital, Department of Ophthalmology, Stuttgart, Germany
- Centre for Ophthalmology University of Tübingen, Germany
| | - Katrin Gekeler
- Katharinenhospital, Department of Ophthalmology, Stuttgart, Germany
- Centre for Ophthalmology University of Tübingen, Germany
| |
Collapse
|
12
|
Kong FY, Li Q, Liu SX. Poor Sleep Quality Predicts Decreased Cognitive Function Independently of Chronic Mountain Sickness Score in Young Soldiers with Polycythemia Stationed in Tibet. High Alt Med Biol 2011; 12:237-42. [PMID: 21962067 DOI: 10.1089/ham.2010.1079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fan-Yi Kong
- Department of Neurology, Kunming General Hospital of PLA, Kunming, Yunnan Province, PR China
| | - Qiang Li
- Department of Neurology, Kunming General Hospital of PLA, Kunming, Yunnan Province, PR China
| | - Shi-Xiang Liu
- Department of Neurology, Kunming General Hospital of PLA, Kunming, Yunnan Province, PR China
| |
Collapse
|
13
|
Guo B, Lu P, Chen X, Zhang W, Chen R. Prevalence of dry eye disease in Mongolians at high altitude in China: the Henan eye study. Ophthalmic Epidemiol 2010; 17:234-41. [PMID: 20642346 DOI: 10.3109/09286586.2010.498659] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE To estimate the prevalence of dry eye disease, analyze the associations between dry eye symptoms and signs, and identify the risk factors in an elderly Mongolian population at high altitude in China. METHODS A population-based survey was conducted in 2006. A total of 2,486 Mongolians age 40 and older were selected. Symptoms of dry eye were assessed using a 6-item validated questionnaire. Dry eye disease was defined if participants reported one or more symptoms often or all the time. Positive signs included a tear-film breakup time of <or=10 seconds, a Schirmer test score of <or= 5 mm, or a fluorescein staining score >or= 1 in one or both eyes. Presence of dry eye symptoms and positive signs were analyzed. Correlations between symptoms and signs, and risk factors were evaluated in a multivariate model. RESULTS Of the 1,816 participants, 50.1% (95% confidence interval, 47.8-52.4) were symptomatic. Tear-film breakup time of </= 10 seconds was 37.7% (95% confidence interval, 35.5-39.9). A Schirmer test score of <or= 5 mm was 19.9% (95% confidence interval, 18.4-22.1). Fluorescein staining score >or= 1 was 6.0% (95% confidence interval, 4.9-7.1). The correlation between dry eye symptoms and positive signs (tear-film breakup time of <or= 10 seconds[r = 0.414, P < 0.001], Schirmer test score of <or= 5 mm [r = 0.164, P = 0.001], and fluorescein staining score >or=1 [r = 0.361, P < 0.001]) were statistically significant. Independent risk factors included increased age, age-related cataract and pterygium. CONCLUSION This study demonstrates a high prevalence rate of dry eye disease in a Mongolian population. Dry eye signs were significantly associated with dry eye symptoms.
Collapse
Affiliation(s)
- Bo Guo
- West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
14
|
Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A 2010; 107:11459-64. [PMID: 20534544 DOI: 10.1073/pnas.1002443107] [Citation(s) in RCA: 572] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
By impairing both function and survival, the severe reduction in oxygen availability associated with high-altitude environments is likely to act as an agent of natural selection. We used genomic and candidate gene approaches to search for evidence of such genetic selection. First, a genome-wide allelic differentiation scan (GWADS) comparing indigenous highlanders of the Tibetan Plateau (3,200-3,500 m) with closely related lowland Han revealed a genome-wide significant divergence across eight SNPs located near EPAS1. This gene encodes the transcription factor HIF2alpha, which stimulates production of red blood cells and thus increases the concentration of hemoglobin in blood. Second, in a separate cohort of Tibetans residing at 4,200 m, we identified 31 EPAS1 SNPs in high linkage disequilibrium that correlated significantly with hemoglobin concentration. The sex-adjusted hemoglobin concentration was, on average, 0.8 g/dL lower in the major allele homozygotes compared with the heterozygotes. These findings were replicated in a third cohort of Tibetans residing at 4,300 m. The alleles associating with lower hemoglobin concentrations were correlated with the signal from the GWADS study and were observed at greatly elevated frequencies in the Tibetan cohorts compared with the Han. High hemoglobin concentrations are a cardinal feature of chronic mountain sickness offering one plausible mechanism for selection. Alternatively, as EPAS1 is pleiotropic in its effects, selection may have operated on some other aspect of the phenotype. Whichever of these explanations is correct, the evidence for genetic selection at the EPAS1 locus from the GWADS study is supported by the replicated studies associating function with the allelic variants.
Collapse
|
15
|
|
16
|
Hackett PH. The International Society for Mountain Medicine—Reflections from the Exit. High Alt Med Biol 2004. [DOI: 10.1089/ham.2004.5.383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|