1
|
Szymanowska A, Rodriguez-Aguayo C, Lopez-Berestein G, Amero P. Non-Coding RNAs: Foes or Friends for Targeting Tumor Microenvironment. Noncoding RNA 2023; 9:52. [PMID: 37736898 PMCID: PMC10514839 DOI: 10.3390/ncrna9050052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a group of molecules critical for cell development and growth regulation. They are key regulators of important cellular pathways in the tumor microenvironment. To analyze ncRNAs in the tumor microenvironment, the use of RNA sequencing technology has revolutionized the field. The advancement of this technique has broadened our understanding of the molecular biology of cancer, presenting abundant possibilities for the exploration of novel biomarkers for cancer treatment. In this review, we will summarize recent achievements in understanding the complex role of ncRNA in the tumor microenvironment, we will report the latest studies on the tumor microenvironment using RNA sequencing, and we will discuss the potential use of ncRNAs as therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
| |
Collapse
|
2
|
Antisense Oligonucleotide-Based Downregulation of the G56R Pathogenic Variant Causing NR2E3-Associated Autosomal Dominant Retinitis Pigmentosa. Genes (Basel) 2019; 10:genes10050363. [PMID: 31083481 PMCID: PMC6562693 DOI: 10.3390/genes10050363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
The recurrent missense variant in Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3), c.166G>A, p.(Gly56Arg) or G56R, underlies 1%–2% of cases with autosomal dominant retinitis pigmentosa (adRP), a frequent, genetically heterogeneous inherited retinal disease (IRD). The mutant NR2E3 protein has a presumed dominant negative effect (DNE) by competition for dimer formation with Cone-Rod Homeobox (CRX) but with abolishment of DNA binding, acting as a repressor in trans. Both the frequency and DNE of G56R make it an interesting target for allele-specific knock-down of the mutant allele using antisense oligonucleotides (AONs), an emerging therapeutic strategy for IRD. Here, we designed gapmer AONs with or without a locked nucleic acid modification at the site of the mutation, which were analyzed for potential off-target effects. Next, we overexpressed wild type (WT) or mutant NR2E3 in RPE-1 cells, followed by AON treatment. Transcript and protein levels of WT and mutant NR2E3 were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot respectively. All AONs showed a general knock-down of mutant and WT NR2E3 on RNA and protein level, showing the accessibility of the region for AON-induced knockdown. Further modifications are needed however to increase allele-specificity. In conclusion, we propose the first proof-of-concept for AON-mediated silencing of a single nucleotide variation with a dominant negative effect as a therapeutic approach for NR2E3-associated adRP.
Collapse
|
3
|
Zhu L, Bi J, Zheng L, Zhao Q, Shu X, Guo G, Liu J, Yang G, Liu J, Yin G. In vitro inhibition of porcine reproductive and respiratory syndrome virus replication by short antisense oligonucleotides with locked nucleic acid modification. BMC Vet Res 2018; 14:109. [PMID: 29580234 PMCID: PMC5870238 DOI: 10.1186/s12917-018-1432-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), which is currently insufficiently controlled. From a previous small-scale screen we identified an effective DNA-based short antisense oligonucleotide (AS-ON) targeting viral NSP9, which could inhibit PRRSV replication in both Marc-145 cells and pulmonary alveolar macrophages (PAMs). The objective of this study was to explore the strategy of incorporating locked nucleic acids (LNAs) to achieve better inhibition of PRRSV replication in vitro. Methods The effective DNA-based AS-ON (YN8) was modified with LNAs at both ends as gap-mer (LNA-YN8-A) or as mix-mer (LNA-YN8-B). Marc-145 cells or PAMs were infected with PRRSV and subsequently transfected. Results Compared with the DNA-based YN8 control, the two AS-ONs modified with LNAs were found to be significantly more effective in decreasing the cytopathic effect (CPE) induced by PRRSV and thus in maintaining cell viability. LNA modifications conferred longer lifetimes to the AS-ON in the cell culture model. Viral ORF7 levels were more significantly reduced at both RNA and protein levels as shown by quantitative PCR, western blot and indirect immunofluorescence staining. Moreover, transfection with LNA modified AS-ON reduced the PRRSV titer by 10-fold compared with the YN8 control. Conclusion Taken together, incorporation of LNA into AS-ON technology holds higher therapeutic promise for PRRS control.
Collapse
Affiliation(s)
- Lingyun Zhu
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China
| | - Junlong Bi
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China.,Present address: Center for Animal Disease Control and Prevention, City, 675000, Yunnan province, Chuxiong, China
| | - Longlong Zheng
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China.,Present address: College of Animal Science and Technology, Shanxi Agricultural University, Shanxi province, Taigu, 030801, China
| | - Qian Zhao
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China
| | - Xianghua Shu
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China
| | - Gang Guo
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, People's Republic of China
| | - Jia Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China
| | - Guishu Yang
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China
| | - Jianping Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, -17177, Stockholm, SE, Sweden.
| | - Gefen Yin
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China.
| |
Collapse
|
4
|
Eze NA, Sullivan RS, Milam VT. Analysis of in Situ LNA and DNA Hybridization Events on Microspheres. Biomacromolecules 2017; 18:1086-1096. [PMID: 28233983 DOI: 10.1021/acs.biomac.6b01373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The hybridization activity of single-stranded DNA and locked nucleic acid (LNA) sequences on microspheres is quantified in situ using flow cytometry. In contrast to conventional sample preparation for flow cytometry that involves several wash steps for posthybridization analysis, the current work entails directly monitoring hybridization events as they occur between oligonucleotide-functionalized microspheres and fluorescently tagged 9 or 15 base-long targets. We find that the extent of hybridization between single-stranded, immobilized probes and soluble targets generally increases with target sequence length or with the incorporation of LNA nucleotides in one or both oligonucleotide strands involved in duplex formation. The rate constants for duplex formation, on the other hand, remain nearly identical for all but one probe-target sequence combination. The exception to this trend involves the LNA probe and shortest perfectly matched DNA target, which exhibit a rate constant that is an order of magnitude lower than any other probe-target pair, including a mismatched duplex case. Separate studies entailing brief heat treatments to suspensions generally do not consistently yield appreciable differences in associated target densities to probe-functionalized microspheres.
Collapse
Affiliation(s)
- Ngozi A Eze
- School of Materials Science and Engineering, ‡Wallace H. Coulter Department of Biomedical Engineering, §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| | - Richard S Sullivan
- School of Materials Science and Engineering, ‡Wallace H. Coulter Department of Biomedical Engineering, §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| | - Valeria T Milam
- School of Materials Science and Engineering, ‡Wallace H. Coulter Department of Biomedical Engineering, §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
5
|
Tursiella ML, Bowman ER, Wanzeck KC, Throm RE, Liao J, Zhu J, Sample CE. Epstein-Barr virus nuclear antigen 3A promotes cellular proliferation by repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1. PLoS Pathog 2014; 10:e1004415. [PMID: 25275486 PMCID: PMC4183747 DOI: 10.1371/journal.ppat.1004415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 08/21/2014] [Indexed: 11/20/2022] Open
Abstract
Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14ARF and p16INK4a expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14ARF and p16INK4a. By contrast, p16INK4a was not detectably expressed in Wp-R BL and the low-level expression of p14ARF was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21WAF1/CIP1, a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21WAF1/CIP1 expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of Wp-R BL cells and LCLs. Epstein-Barr virus (EBV) infects over 98% of the population worldwide and is associated with a variety of human cancers. In the healthy host, the virus represses expression of its proteins to avoid detection by the immune system to enable it to remain in the body for the lifetime of its host, a situation known as latency. This downregulation was first observed in EBV-associated Burkitt lymphoma (BL), which classically express only one viral protein, EBNA-1. A subset of BL named Wp-restricted (Wp-R) BL express additional latency-associated viral proteins. Because Wp-R BL also express wild-type p53 (which normally prevents cellular proliferation), we wanted to explore the possibility that these viral proteins play a role in tumorigenesis. Indeed, we have demonstrated that Wp-R BL cells are more tumorigenic in immunocompromised mice than other BL. Here, we have investigated the role of one of these viral proteins, EBNA-3A. If we inhibit the expression of EBNA-3A, Wp-R BL cells fail to proliferate and express increased p21WAF1/CIP1, a cellular protein that inhibits cell proliferation. These results suggest that this previously undescribed function of EBNA-3A plays a role in the proliferation and likely contributes to tumorigenesis in Wp-R BL.
Collapse
Affiliation(s)
- Melissa L. Tursiella
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Emily R. Bowman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Keith C. Wanzeck
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Robert E. Throm
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jason Liao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Junjia Zhu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Clare E. Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
Straarup EM, Fisker N, Hedtjärn M, Lindholm MW, Rosenbohm C, Aarup V, Hansen HF, Ørum H, Hansen JBR, Koch T. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res 2010; 38:7100-11. [PMID: 20615897 PMCID: PMC2978335 DOI: 10.1093/nar/gkq457] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased potency both in vitro and in vivo compared to longer oligonucleotides. The short LNA oligonucleotides were more target specific, and they exhibited the same biodistribution and tissue half-life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1-2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non-high-density lipoprotein (non-HDL) cholesterol without increasing serum liver toxicity markers. The data presented here show that oligonucleotide length as a parameter needs to be considered in the design of antisense oligonucleotide and that potent short oligonucleotides with sufficient target affinity can be generated using the LNA chemistry. Conclusively, we present a 13-mer LNA oligonucleotide with therapeutic potential that produce beneficial cholesterol lowering effect in non-human primates.
Collapse
|
7
|
Fattal E, Barratt G. Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. Br J Pharmacol 2009; 157:179-94. [PMID: 19366348 DOI: 10.1111/j.1476-5381.2009.00148.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antisense oligonucleotides and small interfering RNA have enormous potential for the treatment of a number of diseases, including cancer. However, several impediments to their widespread use as drugs still have to be overcome: in particular their lack of stability in physiological fluids and their poor penetration into cells. Association with or encapsulation within nano- and microsized drug delivery systems could help to solve these problems. In this review, we describe the progress that has been made using delivery systems composed of natural or synthetic polymers in the form of complexes, nanoparticles or microparticles.
Collapse
Affiliation(s)
- Elias Fattal
- Univ Paris Sud 11, UMR 8612, Châtenay-Malabry, F-92290, France
| | | |
Collapse
|
8
|
State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int J Pharm 2008; 364:237-48. [PMID: 18619528 DOI: 10.1016/j.ijpharm.2008.06.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/07/2008] [Accepted: 06/10/2008] [Indexed: 02/07/2023]
Abstract
Knocking down gene expression using either antisense oligonucleotides (AS-ODNs) or small interfering RNA (siRNAs) has raised a lot of interest in designing new pathways for therapeutics. Despite their potentialities, these negatively charged and hydrophilic molecules request chemical modifications or a carrier that allows cell recognition, cell internalization and moreover subcellular penetration. Although chemical modifications were brought to the basic AS-ODNs and siRNAs, their sensitivity to degradation and poor intracellular penetration is still hampering their clinical applications. We present here the potentialities of polymeric carriers or the use of alternative administration route such as oral, ocular and skin delivery to improve their delivery and to circumvent the hurdles for their clinical applications.
Collapse
|
9
|
Takagi-Sato M, Tokuhiro S, Kawaida R, Koizumi M. Fine-tuning of ENA gapmers as antisense oligonucleotides for sequence-specific inhibition. Oligonucleotides 2007; 17:291-301. [PMID: 17854269 DOI: 10.1089/oli.2007.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
For gene validation and the development of oligonucleotide agents, 2'-O,4'-C-ethylene-bridged nucleic acid (ENA) antisense gapmers are widely available. An in vitro Escherichia coli RNase H reaction analysis using ENA gapmers and an RNA oligonucleotide with mouse peptidylarginine deiminase 4 (PADI4) gene sequences revealed that the RNA oligonucleotide was specifically cleaved in the only reported case of the use of an ENA gapmer with an antisense sequence. On the other hand, duplexes of the full-length transcripts of PADI4 mRNA and ENA gapmers with a wide DNA window were cleaved not only at the target site, but also at nontarget sites by RNase H derived from partial base-pairing between the transcript and the ENA gapmer. When the DNA window region of the ENA gapmer was shortened to 5 or 6 nucleotides, the nontarget cleavage was effectively diminished. Moreover, the specific inhibition of PADI4 mRNA expression was observed in the cotransfection of PADI4 cDNA and ENA gapmers containing a short DNA region into NIH3T3 cells. These results demonstrated that ENA gapmers with a short DNA region improved the sequence-specificity of mRNA downregulation. These optimized ENA gapmers could reduce the "off-target" effect and be applicable to gene validation and oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Miho Takagi-Sato
- Medicinal Chemistry Research Laboratories I, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | | |
Collapse
|
10
|
Kaur H, Babu BR, Maiti S. Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA). Chem Rev 2007; 107:4672-97. [PMID: 17944519 DOI: 10.1021/cr050266u] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Harleen Kaur
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | |
Collapse
|
11
|
Grünweller A, Hartmann RK. Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 2007; 21:235-43. [PMID: 17628121 DOI: 10.2165/00063030-200721040-00004] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Locked nucleic acid (LNA) is the term for oligonucleotides that contain one or more nucleotide building blocks in which an extra methylene bridge fixes the ribose moiety either in the C3'-endo (beta-D-LNA) or C2'-endo (alpha-L-LNA) conformation. The beta-D-LNA modification results in significant increases in melting temperature of up to several degrees per LNA residue. The alpha-L-LNA stereoisomer, which also stabilizes duplexes, lends itself to use in triplex-forming oligonucleotides and transcription factor decoys, which have to maintain a B-type (C2'-endo) DNA conformation. LNA oligonucleotides are synthesized in different formats, such as all-LNA, LNA/DNA mixmers, or LNA/DNA gapmers. Essentially, all aspects of antisense technology have profited from LNA due to its unprecedented affinity, good or even improved mismatch discrimination, low toxicity, and increased metabolic stability. LNA is particularly attractive for in vivo applications that are inaccessible to RNA interference technology, such as suppression of aberrant splice sites or inhibition of oncogenic microRNAs. Furthermore, the extreme antisense-target duplex stability (formation of persistent steric blocks) conferred by beta-D-LNA also contributes to the capacity to invade stable secondary structures of RNA targets. The in vivo studies reported so far indeed point to LNA as a promising antisense player at the horizon of clinical applications.
Collapse
Affiliation(s)
- Arnold Grünweller
- Institute for Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
| | | |
Collapse
|
12
|
Kaur H, Arora A, Wengel J, Maiti S. Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry 2006; 45:7347-55. [PMID: 16752924 DOI: 10.1021/bi060307w] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A locked nucleic acid (LNA) monomer is a conformationally restricted nucleotide analogue with an extra 2'-O, 4'-C-methylene bridge added to the ribose ring. LNA-modified oligonucleotides are known to exhibit enhanced hybridization affinity toward complementary DNA and RNA. In this work, we have evaluated the hybridization thermodynamics of a series of LNA-substituted DNA octamers, modified to various extents by one to three LNA substitutions, introduced at either adenine (5'-AGCACCAG) or thymine (5'-TGCTCCTG) nucleotides. To understand the energetics, counterion effects, and the hydration contribution of the incorporation of LNA modification, a combination of spectroscopic and calorimetric techniques was used. The CD spectra of the corresponding duplexes showed that the modified duplexes adopt an A-type conformation. UV and DSC melting studies revealed that each type of duplex unfolds in a two-state transition. A complete thermodynamic profile at 5 degrees C indicated that the net effect of modification on thermodynamic parameters might be positional and that the neighboring bases flanking the modification might influence the favorable formation of the modified duplexes. Furthermore, relative to the formation of the unmodified reference duplexes, the formation of modified duplexes is accompanied by a higher uptake of counterions and a lower uptake of water molecules.
Collapse
Affiliation(s)
- Harleen Kaur
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | | | |
Collapse
|
13
|
Juncker-Jensen A, Lykkesfeldt AE, Worm J, Ralfkiaer U, Espelund U, Jepsen JS. Insulin-like growth factor binding protein 2 is a marker for antiestrogen resistant human breast cancer cell lines but is not a major growth regulator. Growth Horm IGF Res 2006; 16:224-239. [PMID: 16893667 DOI: 10.1016/j.ghir.2006.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Antiestrogens target the estrogen receptor and counteract the growth stimulatory action of estrogen on human breast cancer. However, acquired resistance to antiestrogens is a major clinical problem in endocrine treatment of breast cancer patients. To mimic acquired resistance, we have used a model system with the antiestrogen sensitive human breast cancer cell line MCF-7 and several antiestrogen resistant cell lines derived from the parental MCF-7 cell line. This model system was used to study the expression and possible involvement in resistant cell growth of insulin-like growth factor binding protein 2 (IGFBP-2). By an oligonucleotide based microarray, we compared the expression of mRNAs encoding insulin-like growth factor binding protein 1,2,3,4,5 and 6 (IGFBP-1 to -6) in the parental MCF-7 cell line to three human breast cancer cell lines, resistant to the antiestrogen ICI 182,780 (Faslodex/Fulvestrant). Only IGFBP-2 mRNA was overexpressed in all three resistant cell lines. Thus, we compared the IGFBP-2 protein expression in MCF-7 cells to nine antiestrogen resistant breast cancer cell lines, resistant to either ICI 182,780 or tamoxifen or RU 58,668 and found that IGFBP-2 was overexpressed in all nine resistant cell lines. Three of the resistant cell lines, resistant to different antiestrogens, were selected for further studies and IGFBP-2 overexpression was demonstrated at the mRNA level as well as the intra- and extracellular protein level. The objective of this study was to examine if IGFBP-2 is involved in growth of antiestrogen resistant human breast cancer cells. Therefore, IGFBP-2 expression was inhibited by antisense oligonucletides and siRNA. Specific inhibition of IGFBP-2 protein expression was achieved in MCF-7 and the three selected antiestrogen resistant cell lines, but no effect on resistant cell growth was observed. Thus, we were able to establish IGFBP-2 as a marker for antiestrogen resistant breast cancer cell lines, although IGFBP-2 was not a major contributor to the resistant cell growth.
Collapse
Affiliation(s)
- A Juncker-Jensen
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
14
|
Jepsen JS, Sørensen MD, Wengel J. Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides 2005; 14:130-46. [PMID: 15294076 DOI: 10.1089/1545457041526317] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic physiochemical properties of LNA and some of the difficulties that may be encountered when applying LNA technology. The central part of the review focuses on the use of LNA molecules in regulation of gene expression, including delivery to cells, stability, unspecific effects, toxicity, pharmacokinetics, and design of LNA oligonucleotides. The last part evaluates LNA as a diagnostic tool in genotyping.
Collapse
Affiliation(s)
- Jan Stenvang Jepsen
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, DK-2100, Copenhagen, Denmark.
| | | | | |
Collapse
|