1
|
Chan WS, Kwok ACM, Wong JTY. Knockdown of Dinoflagellate Cellulose Synthase CesA1 Resulted in Malformed Intracellular Cellulosic Thecal Plates and Severely Impeded Cyst-to-Swarmer Transition. Front Microbiol 2019; 10:546. [PMID: 30941114 PMCID: PMC6433935 DOI: 10.3389/fmicb.2019.00546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
Cellulose synthesis (CS) is conducted by membrane-bound cellulose synthase complexes (CSCs), containing cellulose synthases (CesA), that are either arranged in hexagonal structures in higher plants or in linear arrays in most microbial organisms, including dinoflagellates. Dinoflagellates are a major phytoplankton group having linear-type CSCs and internal cellulosic thecal plates (CTPs) in large cortical vesicles. Immunological study suggested CesA1p were cortically localized to the periphery of CTPs. During cyst-to-swarmer transition (TC–S), synchronized peaks of CesA1 transcription, CesA1p expression, CS and CTP formation occurred in respective order, over 12–16 h, strategically allowing the study of CS regulation and CTP biogenesis. CesA1-knockdown resulted in 40% reduction in CesA1p level and time required for swarmer cells reappearance. CTPs were severely malformed with reduced cellulose content. As CTPs are deposited in internal organelle, the present study demonstrated dinoflagellate CesA1 ortholog was adapted for non-surface deposition; this is different to paradigm of other CesAps which require plasmamembrane for cellulose fiber deposition. This pioneer gene-knockdown study demonstrated the requirement of a gene for dinoflagellate cell wall remodeling and proper TC–S, which are prominent in dinoflagellate life-cycles.
Collapse
Affiliation(s)
- Wai Sun Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Alvin Chun Man Kwok
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
2
|
Crossey K, Cunningham RN, Redpath P, Migaud ME. Atom efficient synthesis of pyrimidine and purine nucleosides by ball milling. RSC Adv 2015. [DOI: 10.1039/c5ra12239b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A range of nucleosides have been synthesised utilising a solventless approach to Vorbrüggen glycosylations aided by mechanochemistry.
Collapse
Affiliation(s)
- K. Crossey
- School of Pharmacy
- Queen's University Belfast
- UK
| | | | - P. Redpath
- School of Pharmacy
- Queen's University Belfast
- UK
| | | |
Collapse
|
3
|
Gorska A, Swiatkowska A, Dutkiewicz M, Ciesiolka J. Modulation of p53 expression using antisense oligonucleotides complementary to the 5'-terminal region of p53 mRNA in vitro and in the living cells. PLoS One 2013; 8:e78863. [PMID: 24244378 PMCID: PMC3824000 DOI: 10.1371/journal.pone.0078863] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 11/17/2022] Open
Abstract
The p53 protein is a key player in cell response to stress events and cancer prevention. However, up-regulation of p53 that occurs during radiotherapy of some tumours results in radio-resistance of targeted cells. Recently, antisense oligonucleotides have been used to reduce the p53 level in tumour cells which facilitates their radiation-induced apoptosis. Here we describe the rational design of antisense oligomers directed against the 5'-terminal region of p53 mRNA aimed to inhibit the synthesis of p53 protein and its ΔNp53 isoform. A comprehensive analysis of the sites accessible to oligomer hybridization in this mRNA region was performed. Subsequently, translation efficiency from the initiation codons for both proteins in the presence of selected oligomers was determined in rabbit reticulocyte lysate and in MCF-7 cells. The antisense oligomers with 2'-OMe and LNA modifications were used to study the mechanism of their impact on translation. It turned out that the remaining RNase H activity of the lysate contributed to modulation of protein synthesis efficiency which was observed in the presence of antisense oligomers. A possibility of changing the ratio of the newly synthetized p53 and ΔNp53 in a controlled manner was revealed which is potentially very attractive considering the relationship between the functioning of these two proteins. Selected antisense oligonucleotides which were designed based on accessibility mapping of the 5'-terminal region of p53 mRNA were able to significantly reduce the level of p53 protein in MCF-7 cells. One of these oligomers might be used in the future as a support treatment in anticancer therapy.
Collapse
Affiliation(s)
- Agnieszka Gorska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | |
Collapse
|
4
|
Crossey K, Hardacre C, Migaud ME. Nucleoside phosphitylation using ionic liquid stabilised phosphorodiamidites and mechanochemistry. Chem Commun (Camb) 2013; 48:11969-71. [PMID: 23128063 DOI: 10.1039/c2cc36367d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of nucleoside phosphoramidites incorporating small amino substituents have been readily synthesised using ionic liquid stabilised phosphorodiamidites coupled with mechanochemistry.
Collapse
Affiliation(s)
- Kerri Crossey
- QUILL/School of Chemistry and Chemical Engineering, Queen's University, Belfast, UK
| | | | | |
Collapse
|
5
|
Dinç E, Ceppi MG, Tóth SZ, Bottka S, Schansker G. The chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the chl a/b ratio remains unaffected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:770-9. [PMID: 22342617 DOI: 10.1016/j.bbabio.2012.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/23/2011] [Accepted: 02/02/2012] [Indexed: 10/14/2022]
Abstract
The effects of changes in the chlorophyll (chl) content on the kinetics of the OJIP fluorescence transient were studied using two different approaches. An extensive chl loss (up to 5-fold decrease) occurs in leaves suffering from either an Mg(2+) or SO(4)(2-) deficiency. The effects of these treatments on the chl a/b ratio, which is related to antenna size, were very limited. This observation was confirmed by the identical light intensity dependencies of the K, J and I-steps of the fluorescence rise for three of the four treatments and by the absence of changes in the F(685 nm)/F(695 nm)-ratio of fluorescence emission spectra measured at 77K. Under these conditions, the F(0) and F(M)-values were essentially insensitive to the chl content. A second experimental approach consisted of the treatment of wheat leaves with specifically designed antisense oligodeoxynucleotides that interfered with the translation of mRNA of the genes coding for chl a/b binding proteins. This way, leaves with a wide range of chl a/b ratios were created. Under these conditions, an inverse proportional relationship between the F(M) values and the chl a/b ratio was observed. A strong effect of the chl a/b ratio on the fluorescence intensity was also observed for barley Chlorina f2 plants that lack chl b. The data suggest that the chl a/b ratio (antenna size) is a more important determinant of the maximum fluorescence intensity than the chl content of the leaf.
Collapse
Affiliation(s)
- Emine Dinç
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | | | |
Collapse
|
6
|
Dinç E, Tóth SZ, Schansker G, Ayaydin F, Kovács L, Dudits D, Garab G, Bottka S. Synthetic antisense oligodeoxynucleotides to transiently suppress different nucleus- and chloroplast-encoded proteins of higher plant chloroplasts. PLANT PHYSIOLOGY 2011; 157:1628-41. [PMID: 21980174 PMCID: PMC3327186 DOI: 10.1104/pp.111.185462] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/05/2011] [Indexed: 05/18/2023]
Abstract
Selective inhibition of gene expression by antisense oligodeoxynucleotides (ODNs) is widely applied in gene function analyses; however, experiments with ODNs in plants are scarce. In this work, we extend the use of ODNs in different plant species, optimizing the uptake, stability, and efficiency of ODNs with a combination of molecular biological and biophysical techniques to transiently inhibit the gene expression of different chloroplast proteins. We targeted the nucleus-encoded phytoene desaturase (pds) gene, encoding a key enzyme in carotenoid biosynthesis, the chlorophyll a/b-binding (cab) protein genes, and the chloroplast-encoded psbA gene, encoding the D1 protein. For pds and psbA, the in vivo stability of ODNs was increased by phosphorothioate modifications. After infiltration of ODNs into juvenile tobacco (Nicotiana benthamiana) leaves, we detected a 25% to 35% reduction in mRNA level and an approximately 5% decrease in both carotenoid content and the variable fluorescence of photosystem II. In detached etiolated wheat (Triticum aestivum) leaves, after 8 h of greening, the mRNA level, carotenoid content, and variable fluorescence were inhibited up to 75%, 25%, and 20%, respectively. Regarding cab, ODN treatments of etiolated wheat leaves resulted in an up to 59% decrease in the amount of chlorophyll b, a 41% decrease of the maximum chlorophyll fluorescence intensity, the cab mRNA level was reduced to 66%, and the protein level was suppressed up to 85% compared with the control. The psbA mRNA and protein levels in Arabidopsis (Arabidopsis thaliana) leaves were inhibited by up to 85% and 72%, respectively. To exploit the potential of ODNs for photosynthetic genes, we propose molecular design combined with fast, noninvasive techniques to test their functional effects.
Collapse
Affiliation(s)
- Emine Dinç
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mori K, Kodama T, Obika S. Design, Synthesis, and Properties of Boat-Shaped Glucopyranosyl Nucleic Acid. Org Lett 2011; 13:6050-3. [DOI: 10.1021/ol2025229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kazuto Mori
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Kodama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Dong L, Xia S, Chen H, Chen J, Zhang J. Spleen-specific suppression of TNF-alpha by cationic hydrogel-delivered antisense nucleotides for the prevention of arthritis in animal models. Biomaterials 2009; 30:4416-26. [PMID: 19481251 DOI: 10.1016/j.biomaterials.2009.04.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/28/2009] [Indexed: 12/18/2022]
Abstract
This study developed a transplantable platform based on cationic hydrogels to deliver antisense oligodeoxynucleotides (ASOs) targeting the mRNA of TNF-alpha. Cationic agarose (c-agarose) was obtained by conjugating ethylenediamine to agarose via an N,N'-carbonyldiimidazole (CDI)-activation method. ASO-c-agarose system was constructed by mixing ASO in cationic agarose gel of proper concentration and gelation temperature. In vivo assessment of ASO distribution suggested that the system specifically target to spleen, wherein the c-agarose-delivered ASO had a concentration remarkably 50-fold higher than that of the naked ASO. The distribution of c-agarose-delivered ASO was scarcely detectable in liver and kidney. Next, three types of animal models were setup to evaluate the therapeutic efficacies of ASO-Gel, including the adjuvant-induced arthritis (AA), carrageen/lipopolysaccharide (LPS)-induced arthritis (CLA) and collagen-induced arthritis (CIA) models. The effects of ASO-c-agarose in alleviating inflammation and tissue destruction were evidenced in more than 90% of the testing animals, with decrease of main inflammatory cytokines, lightening of joint swelling and tissue damage, as well as increase in their body weights. All these findings suggest that this highly operable devise for the conveyance of antisense nucleotides together with its spleen-targeting property, could become a useful means of antisense-based therapeutics against rheumatoid arthritis and other diseases.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
9
|
Sirsi SR, Schray RC, Wheatley MA, Lutz GJ. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides. J Nanobiotechnology 2009; 7:1. [PMID: 19351396 PMCID: PMC2671478 DOI: 10.1186/1477-3155-7-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 04/07/2009] [Indexed: 11/17/2022] Open
Abstract
Antisense oligonucleotides (AOs) have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD) and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine) (PEI) and non-ionic poly(ethylene glycol) (PEG) form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA) nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD.
Collapse
Affiliation(s)
- Shashank R Sirsi
- Drexel University College of Medicine, Department of Pharmacology and Physiology, Philadelphia, Pennsylvania 19102, USA.
| | | | | | | |
Collapse
|
10
|
Ghisaidoobe AB, de Koning MC, Duynstee HI, Ten Kortenaar PB, Overkleeft HS, Filippov DV, van der Marel GA. A two-step sulfurization for efficient solution-phase synthesis of phosphorothioate oligonucleotides. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Yamayoshi A, Kato K, Suga S, Ichinoe A, Arima T, Matsuda T, Kato H, Murakami A, Wake N. Specific apoptosis induction in human papillomavirus-positive cervical carcinoma cells by photodynamic antisense regulation. Oligonucleotides 2007; 17:66-79. [PMID: 17461764 DOI: 10.1089/oli.2006.0047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human papillomavirus type 18 (HPV18) is frequently detected in cervical cancer cells. The viral proteins E6 and E7 are expressed consistently and have oncogenic activities. The E7 protein binds to a tumor suppressor, the retinoblastoma gene product (pRB), however, leading to the stabilization of tumor suppressor, p53 protein. On the other hand, another viral product, E6, forms complexes with p53 and abrogates its function, resulting in tumor progression. These facts imply that the E6 oncogene is one of the ideal targets for directed gene therapy in HPV-positive cervical cancer. In this study, we tried photodynamic antisense regulation of the antiapoptotic E6 expression using a photocross-linking reagent, 4,5',8-trimethylpsoralen, conjugated oligo(nucleoside phosphorothioate) (Ps-S-Oligo). This photodynamic antisense strategy effectively elicited the apoptotic death of HPV18-positive cervical cancer cells through the selective repression of E6 mRNA and consequent stabilization of p53 protein. E7-mediated signals potentially activated the p53 function and mobilized the p53 pathway to deliver pro-apoptotic signals to the cancer cells, leading to the suppression of in vivo tumorigenesis. An extremely low concentration of cisplatin in addition to Ps-S-Oligos further up-regulated p53 activity, provoking massive apoptotic induction. These results suggest that the photodynamic antisense strategy has the great therapeutic potential in HPV-positive cervical cancers.
Collapse
Affiliation(s)
- Asako Yamayoshi
- Department of Molecular Genetics, Division of Molecular and Cell Therapeutics, Kyushu University, Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Snodin DJ, Ryle PR. Understanding and applying regulatory guidance on the nonclinical development of biotechnology-derived pharmaceuticals. BioDrugs 2006; 20:25-52. [PMID: 16573349 DOI: 10.2165/00063030-200620010-00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Biotechnology-derived pharmaceuticals are a well established and growing part of the therapeutic armamentarium. Beginning with recombinant versions of products such as insulin that were previously manufactured by extraction from animal and human sources, licensed biotechnology drugs and those in development now span an ever-increasing range of product types and therapeutic categories. As a consequence of this diversity, both general and product class-specific scientific guidelines have been developed on a regional (e.g. EU/US) or international (e.g. ICH - International Conference on Harmonization) basis. The current portfolio of nonclinical guidelines, particularly ICH S6, emphasizes flexibility and adaptability to the specific circumstances of the individual biotechnology product and its intended indication, taking into account factors not generally applicable to small-molecule drugs, such as pharmacodynamic responsiveness of safety and efficacy models, species specificity, and antibody formation. Guidelines developed principally with small-molecule drugs in mind may, nevertheless, have some applicability to biotechnology drugs on issues such as safety pharmacology, as well as on regulatory, procedural and dossier submission requirements. Scientific guidelines, such as those providing nonclinical guidance, are just one, albeit important, component of an increasingly complex legal/scientific environment in drug development.
Collapse
Affiliation(s)
- David J Snodin
- PAREXEL Drug Development Consulting, Uxbridge, Middlesex, UK.
| | | |
Collapse
|
13
|
Abstract
Despite significant advances that have been made in recent years, there is still an urgent need for novel, more effective and less toxic therapeutics for human cancer. Among many new molecular therapeutics being explored for cancer therapy, antisense oligonucleotides are a promising nucleic acid-based approach, with numerous antisense agents being evaluated in preclinical studies and several anticancer antisense drugs in clinical trials. Although there are still a few problems facing the development of antisense strategies for cancer therapy, with progress made in chemical modifications, target selection and drug delivery systems, antisense oligonucleotides are emerging as a novel approach to cancer therapy used alone or in combination with conventional treatments such as chemotherapy and radiation therapy.
Collapse
Affiliation(s)
- Elizabeth Rose Rayburn
- University of Alabama at Birmingham, Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, VH 113, 1670 University Blvd., Birmingham, AL 35294, USA
| | | | | |
Collapse
|
14
|
Glodde M, Sirsi SR, Lutz GJ. Physiochemical properties of low and high molecular weight poly(ethylene glycol)-grafted poly(ethylene imine) copolymers and their complexes with oligonucleotides. Biomacromolecules 2006; 7:347-56. [PMID: 16398535 DOI: 10.1021/bm050726t] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inefficient delivery of antisense oligonucleotides (AOs) to target cell nuclei remains as the foremost limitation to their usefulness. Copolymers of cationic poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) have been well-studied for delivery of plasmids. However, the properties of PEG-PEI-AO polyplexes have not been comprehensively investigated. Therefore, we synthesized a series of PEG-PEI copolymers and evaluated their physiochemical properties alone and when complexed with AO. The M(w) of PEG was found to be the main determinant of polyplex size, via its influence on particle aggregation. DLS measurements showed that when PEG5000 was grafted to PEI2K and PEI25K, polyplex diameters were extremely small (range 10-90 nm) with minimal aggregation. In contrast, when PEG550 was grafted to PEI2K and PEI25K, polyplexes appeared as much larger aggregates (approximately 250 nm). As expected, the surface charge (zeta potential) was higher for polyplexes containing PEI25K than those containing PEI2K, but decreased with increased levels of PEG grafting. Surprisingly, within the physiological range (pH 7.5-5), the buffering capacity of all copolymers was nearly equivalent to that of unsubstituted PEI2K or PEI25K, and was barely influenced by PEGylation. The stability of polyplexes was evaluated using a heparin polyanion competition assay. Unexpectedly, polyplexes containing PEI2K showed stability equal to or greater than that of PEI25K polyplexes. The level of PEG grafting also had a dramatic effect on polyplex stability. The relationships established between molecular formulations and polyplex size, aggregation, surface charge, and stability should provide a useful guide for future studies aimed at optimizing polymer-mediated AO delivery in cell and animal studies. A summary of the relationships between polyplex structures and recent studies of their transfection capacity is provided.
Collapse
Affiliation(s)
- Martin Glodde
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
15
|
Sirsi SR, Williams JH, Lutz GJ. Poly(ethylene imine)-poly(ethylene glycol) copolymers facilitate efficient delivery of antisense oligonucleotides to nuclei of mature muscle cells of mdx mice. Hum Gene Ther 2006; 16:1307-17. [PMID: 16259564 DOI: 10.1089/hum.2005.16.1307] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antisense oligonucleotides (AO) can facilitate dystrophin expression via targeted exon skipping in cultured cells of Duchenne muscular dystrophy (DMD) patients and in the mouse model of DMD (mdx mice). However, the lack of effective means to deliver AO to myonuclei remains the foremost limitation to their usefulness in DMD gene therapy. In this study we show that copolymers of cationic poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) facilitated efficient cellular uptake and nuclear delivery of AO in mature skeletal muscle fibers isolated from mdx mice. Confocal analysis of dual fluorescently tagged PEG-PEI-AO polyplexes, 24 hr after transfection, showed that the copolymer and AO were colocalized within punctate membrane- associated structures. Importantly, AO was efficiently translocated into myonuclei, whereas the copolymer was mostly excluded. The morphology of all transfected myofibers was perfectly maintained with no indication of damage or cytotoxicity. Quantitative fluorescence analysis showed that transfection with PEG-PEI-AO resulted in a 6-fold higher uptake of AO into myonuclei compared with transfections of AO alone. Interestingly, transfections with rhodamine-labeled PEG-PEI copolymers yielded an approximately 2- fold higher uptake of AO into myonuclei compared with transfections of unlabeled copolymers. Attempts to further increase AO delivery by addition of insulin-transferrin-selenium (ITS) to the medium showed no further improvement in AO delivery. Dose-response analysis indicated saturation of endocytotic uptake of the polyplex. Overall, we conclude that PEG-PEI copolymers represent high-capacity, nontoxic carriers for efficient delivery of AO to nuclei of mature myofibers.
Collapse
Affiliation(s)
- Shashank R Sirsi
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
16
|
Kraynack BA, Baker BF. Small interfering RNAs containing full 2'-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. RNA (NEW YORK, N.Y.) 2006; 12:163-76. [PMID: 16301602 PMCID: PMC1370895 DOI: 10.1261/rna.2150806] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
RNA interference (RNAi) is a process by which short interfering RNAs (siRNAs) direct the degradation of complementary single-strand RNAs. In this study, we investigated the effects of full-strand phosphorothioate (PS) backbone and 2'-O-methyl (2'-OMe) sugar modifications on RNAi-mediated silencing. In contrast to previous reports, we have identified active siRNA duplexes containing full 2'-OMe-modified sense strands that display comparable activity to the unmodified analog of similar sequence. The structure of these modified siRNAs is the predominant determinant of their activity, with sequence and backbone composition being secondary. We further show, by using biotin-tagged siRNAs and affinity-tagged hAgo2/eIF2C2, that activity of siRNA duplexes containing full 2'-OMe substitutions in the sense strand is mediated by the RNA-induced silencing complex (RISC) and that strand-specific loading (or binding) to hAgo2 may be modulated through selective incorporation of these modifications.
Collapse
Affiliation(s)
- Bryan A Kraynack
- ISIS Pharmaceuticals, Carlsbad Research Center, 1896 Rutherford Road, Carlsbad, CA 92008, USA
| | | |
Collapse
|
17
|
Krotz AH, Hang A, Gorman D, Scozzari AN. Polysulfide reagent in solid-phase synthesis of phosphorothioate oligonucleotides: greater than 99.8% sulfurization efficiency. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:1293-9. [PMID: 16252666 DOI: 10.1080/15257770500230384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A solution of sulfur (0.1 M) and sodium sulfide (0.01M) in 3-picoline, referred to as polysulfide reagent, rapidly converts trialkyl and triaryl phosphite triesters to the corresponding phosphorothioate derivatives. Greater than 99.8% average stepwise sulfurization efficiency is obtained in the solid-phase synthesis of DNA and RNA phosphorothioate olgonucleotides via the phosphoramidite approach.
Collapse
Affiliation(s)
- Achim H Krotz
- Isis Pharmaceuticals, Inc., Carlsbad, California 92008, USA
| | | | | | | |
Collapse
|
18
|
Xie C, Staszak MA, Quatroche JT, Sturgill CD, Khau VV, Martinelli MJ. Nucleosidic Phosphoramidite Synthesis via Phosphitylation: Activator Selection and Process Development. Org Process Res Dev 2005. [DOI: 10.1021/op050077d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chaoyu Xie
- Global Chemical Product Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-4813, U.S.A
| | - Michael A. Staszak
- Global Chemical Product Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-4813, U.S.A
| | - John T. Quatroche
- Global Chemical Product Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-4813, U.S.A
| | - Christa D. Sturgill
- Global Chemical Product Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-4813, U.S.A
| | - Vien V. Khau
- Global Chemical Product Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-4813, U.S.A
| | - Michael J. Martinelli
- Global Chemical Product Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-4813, U.S.A
| |
Collapse
|
19
|
Krotz AH, Gaus H, Hardee GE. Formation of oligonucleotide adducts in pharmaceutical formulations. Pharm Dev Technol 2005; 10:283-90. [PMID: 15926677 DOI: 10.1081/pdt-54464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During preformulation studies, we observed that oligonucleotide extracted from topical formulations contained considerable amounts of covalently modified oligonucleotide adducts. In this report, we describe the identification and characterization of reaction products that form when PS-oligodeoxyribonucleotide ISIS 2302 (1) is brought into contact with aqueous solutions of glycerol-derived excipients. Compatibility tests showed that the presence of certain glycerides in the formulation lead to adduct formation (1+58x amu, 1+72x amu, 1+58x+72y amu, x, and y are the number of modifications on one oligonucleotide strand). No adduct formation was observed in the presence of triglycerides or propylene glycol-derived excipients used in the study. Using nucleosides as model compounds, two modifications of deoxyguanosine were isolated by preparative reversed phase (RP)-high pressure liquid chromatography (HPLC) and characterized by nuclear magnetic resonance (NMR) and HPLC-mass spectrometry (MS). Modifications were identified as N2-(1-carboxymethyl)- and N2-(1-carboxyethyl) derivatives of 2'-deoxyguanosine. The mechanism of formation of these adducts may involve advanced glycation reactions possibly caused by excipient impurities or degradation products such as glyceraldehyde or glyceraldehyde derivatives.
Collapse
Affiliation(s)
- Achim H Krotz
- Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, CA 92008, USA.
| | | | | |
Collapse
|
20
|
Ghisolfi L, Papucci L, Bevilacqua A, Canti G, Tataranni G, Lapucci A, Schiavone N, Capaccioli S, Nicolin A. Increased Bcl2 Expression by Antisense Oligoribonucleotides Targeting the Adenine-Uridine-Rich Element Motif. Mol Pharmacol 2005; 68:816-21. [PMID: 15955869 DOI: 10.1124/mol.105.014357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RNA has become a promising target for pharmacological purposes. Most current strategies are directed toward down-regulating its functions. In this study, we provide evidence of the up-regulation of messenger RNA in a sequence-specific manner. The bcl2 (b)-ARE (adenine-uridine-rich element) in the 3'-untranslated region of the b-RNA that regulates the rate of RNA degradation has been targeted with three chemically modified oligoribonucleotides designed in the antisense orientation (asORNs). The three asORNs were studied by a cell-free degradation assay. All three slowed the rate of RNA decay in a dose-response fashion, they were specific to the b-ARE, and two of them were individually effective. asORNs were then transfected into the malignant cells in culture and b-RNA half-life was measured by real-time reverse transcriptase-polymerase chain reaction. We showed that by stabilizing b-RNA the three asORNs increased the expression of b-RNA and of the relevant protein in a dose-response fashion.
Collapse
Affiliation(s)
- Laura Ghisolfi
- Department of Pharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Krotz AH, Mehta RC, Hardee GE. Peroxide-mediated desulfurization of phosphorothioate oligonucleotides and its prevention. J Pharm Sci 2005; 94:341-52. [PMID: 15614814 DOI: 10.1002/jps.20235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Desulfurization at the internucleotide phosphorothioate linkage of antisense oligonucleotides (ASOs) in dermatological formulations has been investigated using strong ion exchange chromatography and mass spectroscopy. The formation of phosphate diester linkages appeared to arise from a reaction between the phosphorothioate oligonucleotide and a potent oxidizing agent. Screening of excipients used in the formulation indicated that the cause of desulfurization was related to the presence of polyethylene glycol-derived nonionic surfactants MYRJ 52 or BRIJ 58. Autoxidation of the polyethylene glycol chain is suggested as the probable origin for the observed incompatibility. The ability of various antioxidants to prevent oxidative degradation of ASO-1 in simple test systems and in oil-in-water emulsions is described. It is found that in test systems both lipophilic and hydrophilic antioxidants are effective. However, in cream formulation (oil-in-water emulsions) of ASO-1 the addition of hydrophilic antioxidants L-cysteine or DL-alpha-lipoic acid has been shown to be superior in protecting the oligonucleotide from desulfurization upon storage.
Collapse
Affiliation(s)
- Achim H Krotz
- Isis Pharmaceuticals, Inc., 2292 Faraday Ave., Carlsbad, California 92008, USA.
| | | | | |
Collapse
|
22
|
Radi M, Mugnaini C, Petricci E, Corelli F, Botta M. Synthesis of reactive cytidine derivatives as building blocks for cross-linking oligonucleotides. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.04.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Krotz AH, Gorman D, Mataruse P, Foster C, Godbout JD, Coffin CC, Scozzari AN. Phosphorothioate Oligonucleotides with Low Phosphate Diester Content: Greater than 99.9% Sulfurization Efficiency with “Aged” Solutions of Phenylacetyl Disulfide (PADS). Org Process Res Dev 2004. [DOI: 10.1021/op040208v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Achim H. Krotz
- Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| | - Dennis Gorman
- Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| | - Paul Mataruse
- Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| | - Craig Foster
- Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| | - James D. Godbout
- Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, California 92008
| | | | | |
Collapse
|
24
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447433 DOI: 10.1002/cfg.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|