1
|
Astaneh ME, Fereydouni N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS OMEGA 2024; 9:41107-41129. [PMID: 39398164 PMCID: PMC11465465 DOI: 10.1021/acsomega.4c04961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This review examines the convergence of silver nanoparticles (AgNPs), three-dimensional (3D) printing, and wound healing, focusing on significant advancements in these fields. We explore the unique properties of AgNPs, notably their strong antibacterial efficacy and their potential applications in enhancing wound recovery. Furthermore, the review delves into 3D printing technology, discussing its core principles, various materials employed, and recent innovations. The integration of AgNPs into 3D-printed structures for regenerative medicine is analyzed, emphasizing the benefits of this combined approach and identifying the challenges that must be addressed. This comprehensive overview aims to elucidate the current state of the field and to direct future research toward developing more effective solutions for wound healing.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
2
|
Shannon A, O'Sullivan A, O'Sullivan KJ, Clifford S, O'Sullivan L. Assessing the Dispersion Stability of Antimicrobial Fillers in Photosensitive Resin for Vat Polymerization 3D Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e1334-e1342. [PMID: 39359597 PMCID: PMC11442375 DOI: 10.1089/3dp.2022.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Polymers are widely used in healthcare due to their biocompatibility and mechanical properties; however, the use of polymers in medical products can promote biofilm formation, which can be a source of hospital-acquired infections. Due to this, there is a rising demand for inherently antimicrobial polymers for devices in contact with patients. 3D printing as a manufacturing technology has increased exponentially in recent years. Surgical guides, orthotics, and prosthetics, among other medical devices, created by vat polymerization have been used in hospitals to treat patients. Biocompatible resins are available for these applications, but there is a lack of antimicrobial resins, which would further improve the technology for clinical use. The focus of this study was to assess settling of candidate antimicrobial metal and metal oxide fillers in vat polymerization resin to determine which fillers were compatible with the resin. Dispersion stability was assessed by measuring settling over the maximum print duration of the medium priced desktop 3D printers to evaluate printability of 17 potentially antimicrobial resins. Eight materials displayed settling behavior during the test period: molybdenum oxide, zirconium oxide nanopowder, scandium oxide, zirconium oxide, titanium oxide, tungsten oxide, lanthanum oxide, and magnesium oxide. No settling was observed for manganese oxide, magnesium oxide nanopowder, titanium oxide nanopowder, copper oxide, silver oxide, zinc oxide nanopowder, zinc oxide, silver nanopowder, and gold nanopowder during the test period. This method could be applied to assess settling of other fillers introduced into 3D printing resins before actual printing.
Collapse
Affiliation(s)
- Alice Shannon
- Rapid Innovation Unit, Confirm Centre for Smart Manufacturing, Health Research Institute, University of Limerick, Limerick, Ireland
- National Childrens Research Centre, Dublin, Ireland
| | - Aidan O'Sullivan
- Rapid Innovation Unit, Confirm Centre for Smart Manufacturing, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Kevin J O'Sullivan
- Rapid Innovation Unit, Confirm Centre for Smart Manufacturing, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Seamus Clifford
- School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Leonard O'Sullivan
- Rapid Innovation Unit, Confirm Centre for Smart Manufacturing, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
3
|
Kainz M, Perak S, Stubauer G, Kopp S, Kauscheder S, Hemetzberger J, Martínez Cendrero A, Díaz Lantada A, Tupe D, Major Z, Hanetseder D, Hruschka V, Wolbank S, Marolt Presen D, Mühlberger M, Guillén E. Additive and Lithographic Manufacturing of Biomedical Scaffold Structures Using a Versatile Thiol-Ene Photocurable Resin. Polymers (Basel) 2024; 16:655. [PMID: 38475341 DOI: 10.3390/polym16050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Additive and lithographic manufacturing technologies using photopolymerisation provide a powerful tool for fabricating multiscale structures, which is especially interesting for biomimetic scaffolds and biointerfaces. However, most resins are tailored to one particular fabrication technology, showing drawbacks for versatile use. Hence, we used a resin based on thiol-ene chemistry, leveraging its numerous advantages such as low oxygen inhibition, minimal shrinkage and high monomer conversion. The resin is tailored to applications in additive and lithographic technologies for future biofabrication where fast curing kinetics in the presence of oxygen are required, namely 3D inkjet printing, digital light processing and nanoimprint lithography. These technologies enable us to fabricate scaffolds over a span of six orders of magnitude with a maximum of 10 mm and a minimum of 150 nm in height, including bioinspired porous structures with controlled architecture, hole-patterned plates and micro/submicro patterned surfaces. Such versatile properties, combined with noncytotoxicity, degradability and the commercial availability of all the components render the resin as a prototyping material for tissue engineers.
Collapse
Affiliation(s)
- Michael Kainz
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Stjepan Perak
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Gerald Stubauer
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Sonja Kopp
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Sebastian Kauscheder
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Julia Hemetzberger
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | | | - Andrés Díaz Lantada
- Department of Mechanical Engineering, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - Disha Tupe
- Institute of Polymer Product Engineering, Johannes Kepler University, 4040 Linz, Austria
| | - Zoltan Major
- Institute of Polymer Product Engineering, Johannes Kepler University, 4040 Linz, Austria
| | - Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Veronika Hruschka
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Michael Mühlberger
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Elena Guillén
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| |
Collapse
|
4
|
Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A. Efficacy and bone-contact biocompatibility of glass ionomer cement as a biomaterial for bone regeneration: A systematic review. J Mech Behav Biomed Mater 2023; 146:106099. [PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
Collapse
Affiliation(s)
- Nozimjon Tuygunov
- Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Azwatee Abdul Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Dental Materials Science and Technology, Faculty of Dentistry, Padjadjaran University, Jatinangor, 45363, Indonesia.
| |
Collapse
|
5
|
Okkalidis N, Bliznakova K, Kolev N. A filament 3D printing approach for CT-compatible bone tissues replication. Phys Med 2022; 102:96-102. [PMID: 36162230 DOI: 10.1016/j.ejmp.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE The aim of this study is the development of a methodology for manufacturing 3D printed anthropomorphic structures, which mimic the X-ray properties of the human bone tissue. METHODS A mixing approach of two different materials is proposed for the fabrication of a radiologically equivalent hip bone for an anthropomorphic abdominal phantom. The materials employed for the phantom were polylactic acid (PLA) and Stonefil, while a custom-made dual motor filament extrusion setup and a custom-made software associating medical images directly with the 3D printing process were employed. RESULTS Three phantoms representing the hip bone were 3D printed utilizing two filaments under three different printing scenarios. The phantoms are based on a patient's abdominal CT scan images. Histograms of CT scans of the printed hip bone phantoms were calculated and compared to the original patient's hip bone histogram, demonstrating that a constant mixing composition of 30% Stonefil and 70% PLA with 0.0375 extrusion rate per voxel (93.75% flow for fulfilling a single voxel) for the cancellous bone, and using 100% Stonefil with 0.04 extrusion rate per voxel (100% flow) for the cortical bone results in a realistic anatomy replication of the hip bone. Reproduced HU varied between 700 and 800, which are close to those of the hip bone. CONCLUSIONS The study demonstrated that it is possible to mix two different filaments in real-time during the printing process to obtain phantoms with realistic and radiographically bone tissue equivalent attenuation. The results will be explored for manufacturing a CT-compatible abdominal phantom.
Collapse
Affiliation(s)
- Nikiforos Okkalidis
- Medical University of Varna, Bulgaria; Morphé, Praxitelous 1, Thessaloniki, Greece.
| | | | - Nikola Kolev
- Medical University of Varna, Bulgaria; First Clinic of Surgery in UMHAT "Saint Marina", Varna, Bulgaria
| |
Collapse
|
6
|
Shannon A, O'Sullivan KJ, Clifford S, O'Sullivan L. Assessment and selection of filler compounds for radiopaque PolyJet multi-material 3D printing for use in clinical settings. Proc Inst Mech Eng H 2022; 236:740-747. [PMID: 35296167 DOI: 10.1177/09544119221084819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this research was to assess a selection of radiopaque filler compounds for increasing radiopacity in a resin suitable for Polyjet multi-material 3D printing. A radiopaque resin has potential applications in medicine to produce patient-specific anatomical models with realistic radiological properties, training aids, and skin contacting components such as surgical or procedural guides that require visibility under fluoroscopy. The desirable filler would have a high level of radiopacity under ionising imaging modalities, such as X-ray, CT, fluoroscopy or angiography. Nine potential filler compounds were selected based on atomic number and handling risk: barium sulphate, bismuth oxide, zirconium oxide, strontium oxide, strontium fluoride, strontium carbonate, iodine, niobium oxide and tantalum oxide. The fillers were evaluated using selected criteria. A weighted material selection matrix was developed to prioritise and select a filler for future 3D printing on a multi-material 3D printer. Zirconium oxide was the highest scoring filler compound in the material selection matrix, scoring 4.4 out of a maximum of 5. MED610TM resin doped with zirconium oxide was shown to be UV curable, and when cured is non-toxic, environmentally friendly, and has the ability to display antimicrobial properties. In terms of radiopacity, a sample with thickness 1.5 mm of MED610™ resin doped with 20 wt.% zirconium oxide produced X-ray radiopacity equivalent to 3 mm of aluminium. Zirconium oxide was selected using the material selection matrix. This radiopaque resin can be used to produce anatomical models with accurate radiological properties, training aids or skin contacting devices that require visibility under ionising imaging modalities. The 3D printing validation run successfully demonstrated that the material selection matrix prioritised a filler suitable for radiopaque multi-material 3D printing.
Collapse
Affiliation(s)
- Alice Shannon
- Design Factors Research Group, School of Design, University of Limerick, Limerick, Ireland.,National Children's Research Centre, Gate 5, Our Lady's Children's Hospital, Crumlin, Dublin 12.,Health Research Institute, University of Limerick, Ireland
| | - Kevin J O'Sullivan
- Design Factors Research Group, School of Design, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Ireland.,Confirm Smart Manufacturing Centre, University of Limerick, University of Limerick, Ireland
| | - Seamus Clifford
- School of Engineering, University of Limerick, Limerick, Ireland
| | - Leonard O'Sullivan
- Design Factors Research Group, School of Design, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Ireland.,Confirm Smart Manufacturing Centre, University of Limerick, University of Limerick, Ireland
| |
Collapse
|
7
|
Li C, Chen J, Lv Y, Liu Y, Guo Q, Wang J, Wang C, Hu P, Liu Y. Recent Progress in Electrospun Nanofiber-Based Degenerated Intervertebral Disc Repair. ACS Biomater Sci Eng 2021; 8:16-31. [PMID: 34913688 DOI: 10.1021/acsbiomaterials.1c00970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Annulus fibrosus fissure and fibrosis of nucleus pulposus are severe morphological characteristics of intervertebral disc degeneration. Currently, surgery or drugs are used to relieve pain in such cases. Tissue engineering is a new multidisciplinary strategy with great potential for use in joint replacement and organ regeneration. Based on the natural anatomy of intervertebral discs, intervertebral disc scaffolds are fabricated by exploiting the special arrangement of extracellular matrix fibers. Electrospun nanofibers possess clear advantages in repairing degenerated intervertebral discs. This article reviews and summarizes recently developed methods for improving and fabricating electrospun nanofiber annulus fibrosus scaffolds in terms of nanofiber alignment, material selection, loading additives, and the progress made in combining other advanced technologies with electrospun nanofibers. In addition, the improvement in mechanical properties and biocompatibility of nucleus pulposus scaffolds by electrospun nanofiber-reinforced hydrogels is discussed. Finally, complete intervertebral disc scaffolds can be fabricated using the disc-like angle-ply structure and other emerging fabrication methods. Taken together, electrospun nanofiber intervertebral disc scaffolds are promising for clinical applications.
Collapse
Affiliation(s)
- Chenxi Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yarong Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yueqi Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quanyi Guo
- Institute of Orthopedics, the Fourth Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiandong Wang
- Division of Breast Surgery, Department of General Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, Jilin University, Changchun, Jilin 130012, China
| | - Ping Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|