1
|
Guo J, He J, Xu S, Chen X, Zhu Z, Ji X, Wu D. Phosphatidylserine: A Novel Target for Ischemic Stroke Treatment. Biomolecules 2024; 14:1293. [PMID: 39456225 PMCID: PMC11506168 DOI: 10.3390/biom14101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past 40 years, research has heavily emphasized stroke treatments that directly target ischemic cascades after stroke onset. Much attention has focused on studying neuroprotective drugs targeting one aspect of the ischemic cascade. However, the single-target therapeutic approach resulted in minimal clinical benefit and poor outcomes in patients. Considering the ischemic cascade is a multifaceted and complex pathophysiological process with many interrelated pathways, the spotlight is now shifting towards the development of neuroprotective drugs that affect multiple aspects of the ischemic cascade. Phosphatidylserine (PS), known as the "eat-me" signal, is a promising candidate. PS is involved in many pathophysiological changes in the central nervous system after stroke onset, including apoptosis, inflammation, coagulation, and neuronal regeneration. Moreover, PS might also exert various roles in different phases after stroke onset. In this review, we describe the synthesis, regulation, and function of PS under physiological conditions. Furthermore, we also summarize the different roles of PS after stroke onset. More importantly, we also discuss several treatment strategies that target PS. We aim to advocate a novel stroke care strategy by targeting PS through a translational perspective.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
| | - Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
| | - Shuaili Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China;
| | - Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
| | - Zhanwei Zhu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China;
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; (J.G.); (J.H.); (X.C.); (Z.Z.)
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China;
| |
Collapse
|
2
|
Hussain M, Khan I, Chaudhary MN, Ali K, Mushtaq A, Jiang B, Zheng L, Pan Y, Hu J, Zou X. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition. Chem Phys Lipids 2024; 264:105422. [PMID: 39097133 DOI: 10.1016/j.chemphyslip.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.
Collapse
Affiliation(s)
- Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, 400715, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Yeo XY, Tam D, Jo Y, Kim JE, Ryu D, Chan JP, Jung S. Polar Lipids Supplementation Enhances Basal Excitatory Synaptic Transmission in Primary Cortical Neuron. Mol Nutr Food Res 2024; 68:e2300883. [PMID: 38984736 DOI: 10.1002/mnfr.202300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/28/2024] [Indexed: 07/11/2024]
Abstract
SCOPE Polar lipids, such as gangliosides and phospholipids, are fundamental structural components that play critical roles in the development and maturation of neurons in the brain. Recent evidence has demonstrated that dietary intakes of polar lipids in early life are associated with improved cognitive outcomes during infancy and adolescence. However, the specific mechanisms through which these lipids impact cognition remain unclear. METHODS AND RESULTS This study examines the direct physiological impact of polar lipid supplementation, in the form of buttermilk powder, on primary cortical neuron growth and maturation. The changes are measured with postsynaptic current response recordings, immunohistochemical examination of functional synapse localization and numbers, and the biochemical quantification of receptors responsible for neuronal synaptic neurotransmission. Chronic exposure to polar lipids increases primary mouse cortical neuron basal excitatory synapse response strength attributed to enhanced dendritic complexity and an altered expression of the excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit 2 (GluR2). CONCLUSION The present finding suggests that dietary polar lipids improve human cognition through an enhancement of neuronal maturation and/or function.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore, 119228, Republic of Singapore
| | - Dao Tam
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, S14 Level 6, Science Drive 2, Singapore, 117542, Republic of Singapore
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jia Pei Chan
- Research and Development Department, Abbott Nutrition, 3300 Stelzer Road, RP3-2, Columbus, Ohio, 43219, USA
| | - Sangyong Jung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore, 117593, Republic of Singapore
- Department of Medical Science, College of Medicine, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| |
Collapse
|
4
|
Slykerman R, Davies N, Fuad M, Dekker J. Milk Fat Globule Membranes for Mental Health across the Human Lifespan. Foods 2024; 13:1631. [PMID: 38890860 PMCID: PMC11171857 DOI: 10.3390/foods13111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The milk fat globule membrane (MFGM) contains bioactive proteins, carbohydrates, and lipids. Polar lipids found in the MFGM play a critical role in maintaining cell membrane integrity and neuronal signalling capacity, thereby supporting brain health. This review summarises the literature on the MFGM and its phospholipid constituents for improvement of mental health across three key stages of the human lifespan, i.e., infancy, adulthood, and older age. MFGM supplementation may improve mental health by reducing neuroinflammation and supporting neurotransmitter synthesis through the gut-brain axis. Fortification of infant formula with MFGMs is designed to mimic the composition of breastmilk and optimise early gut and central nervous system development. Early behavioural and emotional development sets the stage for future mental health. In adults, promising results suggest that MFGMs can reduce the negative consequences of situational stress. Preclinical models of age-related cognitive decline suggest a role for the MFGM in supporting brain health in older age and reducing depressive symptoms. While there is preclinical and clinical evidence to support the use of MFGM supplementation for improved mental health, human studies with mental health as the primary target outcome are sparce. Further high-quality clinical trials examining the potential of the MFGM for psychological health improvement are important.
Collapse
Affiliation(s)
- Rebecca Slykerman
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Naomi Davies
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Maher Fuad
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| | - James Dekker
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| |
Collapse
|
5
|
Chaulagain A, Lyhmann I, Halmøy A, Widding-Havneraas T, Nyttingnes O, Bjelland I, Mykletun A. A systematic meta-review of systematic reviews on attention deficit hyperactivity disorder. Eur Psychiatry 2023; 66:e90. [PMID: 37974470 PMCID: PMC10755583 DOI: 10.1192/j.eurpsy.2023.2451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND There are now hundreds of systematic reviews on attention deficit hyperactivity disorder (ADHD) of variable quality. To help navigate this literature, we have reviewed systematic reviews on any topic on ADHD. METHODS We searched MEDLINE, PubMed, PsycINFO, Cochrane Library, and Web of Science and performed quality assessment according to the Joanna Briggs Institute Manual for Evidence Synthesis. A total of 231 systematic reviews and meta-analyses met the eligibility criteria. RESULTS The prevalence of ADHD was 7.2% for children and adolescents and 2.5% for adults, though with major uncertainty due to methodological variation in the existing literature. There is evidence for both biological and social risk factors for ADHD, but this evidence is mostly correlational rather than causal due to confounding and reverse causality. There is strong evidence for the efficacy of pharmacological treatment on symptom reduction in the short-term, particularly for stimulants. However, there is limited evidence for the efficacy of pharmacotherapy in mitigating adverse life trajectories such as educational attainment, employment, substance abuse, injuries, suicides, crime, and comorbid mental and somatic conditions. Pharmacotherapy is linked with side effects like disturbed sleep, reduced appetite, and increased blood pressure, but less is known about potential adverse effects after long-term use. Evidence of the efficacy of nonpharmacological treatments is mixed. CONCLUSIONS Despite hundreds of systematic reviews on ADHD, key questions are still unanswered. Evidence gaps remain as to a more accurate prevalence of ADHD, whether documented risk factors are causal, the efficacy of nonpharmacological treatments on any outcomes, and pharmacotherapy in mitigating the adverse outcomes associated with ADHD.
Collapse
Affiliation(s)
- Ashmita Chaulagain
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingvild Lyhmann
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anne Halmøy
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Tarjei Widding-Havneraas
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Olav Nyttingnes
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ingvar Bjelland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Arnstein Mykletun
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Centre for Work and Mental Health, Nordland Hospital, Bodø, Norway
| |
Collapse
|
6
|
Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z. Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci 2022; 14:975176. [PMID: 35992593 PMCID: PMC9382310 DOI: 10.3389/fnagi.2022.975176] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylserine (PS) is an anionic phospholipid in the eukaryotic membrane and is abundant in the brain. Accumulated studies have revealed that PS is involved in the multiple functions of the brain, such as activation of membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement. Those functions of PS are related to central nervous system (CNS) diseases. In this review, we discuss the metabolism of PS, the anti-inflammation function of PS in the brain; the alterations of PS in different CNS diseases, and the possibility of PS to serve as a therapeutic agent for diseases. Clinical studies have showed that PS has no side effects and is well tolerated. Therefore, PS and PS liposome could be a promising supplementation for these neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaojing Li
- Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Bo Yang,
| | - Zhigang Miao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Zhigang Miao,
| |
Collapse
|