1
|
van Tol N, Flores Andaluz G, Leeggangers HACF, Roushan MR, Hooykaas PJJ, van der Zaal BJ. Zinc Finger Artificial Transcription Factor-Mediated Chloroplast Genome Interrogation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:393-406. [PMID: 30398644 PMCID: PMC6375250 DOI: 10.1093/pcp/pcy216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
The large majority of core photosynthesis proteins in plants are encoded by nuclear genes, but a small portion have been retained in the plastid genome. These plastid-encoded chloroplast proteins fulfill essential roles in the process of photochemistry. Here, we report the use of nuclear-encoded, chloroplast-targeted zinc finger artificial transcription factors (ZF-ATFs) with effector domains of prokaryotic origin to modulate the expression of chloroplast genes, and to enhance the photochemical activity and growth characteristics of Arabidopsis thaliana plants. This technique was named chloroplast genome interrogation. Using this novel approach, we obtained evidence that ZF-ATFs can indeed be translocated to chloroplasts of Arabidopsis plants, can modulate their growth and operating light use efficiency of PSII, and finally can induce statistically significant changes in the expression levels of several chloroplast genes. Our data suggest that the distortion of chloroplast gene expression might be a feasible approach to manipulate the efficiency of photosynthesis in plants.
Collapse
Affiliation(s)
- Niels van Tol
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Gema Flores Andaluz
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Hendrika A C F Leeggangers
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - M Reza Roushan
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Paul J J Hooykaas
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Bert J van der Zaal
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| |
Collapse
|
2
|
van Tol N, van der Zaal BJ. Artificial transcription factor-mediated regulation of gene expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:58-67. [PMID: 25017160 DOI: 10.1016/j.plantsci.2014.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 06/03/2023]
Abstract
The transcriptional regulation of endogenous genes with artificial transcription factors (TFs) can offer new tools for plant biotechnology. Three systems are available for mediating site-specific DNA recognition of artificial TFs: those based on zinc fingers, TALEs, and on the CRISPR/Cas9 technology. Artificial TFs require an effector domain that controls the frequency of transcription initiation at endogenous target genes. These effector domains can be transcriptional activators or repressors, but can also have enzymatic activities involved in chromatin remodeling or epigenetic regulation. Artificial TFs are able to regulate gene expression in trans, thus allowing them to evoke dominant mutant phenotypes. Large scale changes in transcriptional activity are induced when the DNA binding domain is deliberately designed to have lower binding specificity. This technique, known as genome interrogation, is a powerful tool for generating novel mutant phenotypes. Genome interrogation has clear mechanistic and practical advantages over activation tagging, which is the technique most closely resembling it. Most notably, genome interrogation can lead to the discovery of mutant phenotypes that are unlikely to be found when using more conventional single gene-based approaches.
Collapse
Affiliation(s)
- Niels van Tol
- Department of Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Bert J van der Zaal
- Department of Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
3
|
Specific reactivation of latent HIV-1 with designer zinc-finger transcription factors targeting the HIV-1 5'-LTR promoter. Gene Ther 2014; 21:490-5. [PMID: 24622733 DOI: 10.1038/gt.2014.21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
Abstract
HIV-1 latency remains the primary obstacle to the eradication of this virus. The current latency-reversing agents cannot effectively and specifically eliminate latent HIV-1 reservoirs. Therefore, better approaches are urgently needed. In this study, we describe a novel strategy to reactivate latent HIV-1 using zinc-finger transcription factors composed of designer zinc-finger proteins and the transcriptional activation domain VP64. For the first time, we demonstrate that ZF-VP64 with HIV-1 long terminal repeat (LTR) promoter-specific affinity could significantly reactivate HIV-1 expression from latently infected cells without altering cell proliferation or cell cycle progression. We also provide evidence that the reactivation of HIV-1 by ZF-VP64 occurs through specific binding to the 5'-LTR promoter. Our results demonstrate the potential of this novel approach for anti-HIV-1 latency therapy.
Collapse
|
4
|
Jia Q, van Verk MC, Pinas JE, Lindhout BI, Hooykaas PJJ, van der Zaal BJ. Zinc finger artificial transcription factor-based nearest inactive analogue/nearest active analogue strategy used for the identification of plant genes controlling homologous recombination. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1069-1079. [PMID: 23915119 DOI: 10.1111/pbi.12101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
In previous work, we selected a particular transcription factor, designated VP16-HRU, from a pool of zinc finger artificial transcription factors (ZF-ATFs) used for genome interrogation. When expressed in Arabidopsis thaliana under control of the ribosomal protein S5A promoter, the RPS5A::VP16-HRU construct led to a 200- to 300-fold increase in the frequency of somatic intrachromosomal homologous recombination (iHR). Because the expression of each ZF-ATF leads to a large number of transcriptional changes, we designed a strategy employing a collection of structurally similar ZF-ATFs to filter out the transcriptional changes relevant to the phenotype by deep sequencing. In that manner, 30 transcripts were found to be consistently induced in plants with enhanced homologous recombination (HR). For 25 of the cognate genes, their effect on the HR process was assessed using cDNA/gDNA expression constructs. For three genes, ectopic expression indeed led to enhanced iHR frequencies, albeit much lower than the frequency observed when a HR-inducing ZF-ATF was present. Altogether, our data demonstrate that despite the large number of transcriptional changes brought about by individual ZF-ATFs, causal changes can be identified. In our case, the picture emerged that a natural regulatory switch for iHR does not exist but that ZF-ATFs-like VP16-HRU act as an ectopic master switch, orchestrating the timely expression of a set of plant genes that each by themselves only have modest effects, but when acting together support an extremely high iHR frequency.
Collapse
Affiliation(s)
- Qi Jia
- Department of Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Blancafort P, Jin J, Frye S. Writing and rewriting the epigenetic code of cancer cells: from engineered proteins to small molecules. Mol Pharmacol 2012; 83:563-76. [PMID: 23150486 DOI: 10.1124/mol.112.080697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The epigenomic era has revealed a well-connected network of molecular processes that shape the chromatin landscape. These processes comprise abnormal methylomes, transcriptosomes, genome-wide histone post-transcriptional modifications patterns, histone variants, and noncoding RNAs. The mapping of these processes in large scale by chromatin immunoprecipitation sequencing and other methodologies in both cancer and normal cells reveals novel therapeutic opportunities for anticancer intervention. The goal of this minireview is to summarize pharmacological strategies to modify the epigenetic landscape of cancer cells. These approaches include the use of novel small molecule inhibitors of epigenetic processes specifically deregulated in cancer cells and the design of engineered proteins able to stably reprogram the epigenetic code in cancer cells in a way that is similar to normal cells.
Collapse
Affiliation(s)
- Pilar Blancafort
- School of Anatomy, Physiology, and Human Biology, M309, the University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia.
| | | | | |
Collapse
|
6
|
Lara H, Wang Y, Beltran AS, Juárez-Moreno K, Yuan X, Kato S, Leisewitz AV, Cuello Fredes M, Licea AF, Connolly DC, Huang L, Blancafort P. Targeting serous epithelial ovarian cancer with designer zinc finger transcription factors. J Biol Chem 2012; 287:29873-86. [PMID: 22782891 DOI: 10.1074/jbc.m112.360768] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers.
Collapse
Affiliation(s)
- Haydee Lara
- Department of Pharmacology, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, Strahl BD, Blancafort P. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res 2012; 40:6725-40. [PMID: 22561374 PMCID: PMC3413152 DOI: 10.1093/nar/gks360] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription factor (TF) SOX2 is essential for the maintenance of pluripotency and self-renewal in embryonic stem cells. In addition to its normal stem cell function, SOX2 over-expression is associated with cancer development. The ability to selectively target this and other oncogenic TFs in cells, however, remains a significant challenge due to the ‘undruggable’ characteristics of these molecules. Here, we employ a zinc finger (ZF)-based artificial TF (ATF) approach to selectively suppress SOX2 gene expression in cancer cells. We engineered four different proteins each composed of 6ZF arrays designed to bind 18 bp sites in the SOX2 promoter and enhancer region, which controls SOX2 methylation. The 6ZF domains were linked to the Kruppel Associated Box (SKD) repressor domain. Three engineered proteins were able to bind their endogenous target sites and effectively suppress SOX2 expression (up to 95% repression efficiencies) in breast cancer cells. Targeted down-regulation of SOX2 expression resulted in decreased tumor cell proliferation and colony formation in these cells. Furthermore, induced expression of an ATF in a mouse model inhibited breast cancer cell growth. Collectively, these findings demonstrate the effectiveness and therapeutic potential of engineered ATFs to mediate potent and long-lasting down-regulation of oncogenic TF expression in cancer cells.
Collapse
Affiliation(s)
- Sabine Stolzenburg
- Epigenetic Editing, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Suppression of breast tumor growth and metastasis by an engineered transcription factor. PLoS One 2011; 6:e24595. [PMID: 21931769 PMCID: PMC3172243 DOI: 10.1371/journal.pone.0024595] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022] Open
Abstract
Maspin is a tumor and metastasis suppressor playing an essential role as gatekeeper of tumor progression. It is highly expressed in epithelial cells but is silenced in the onset of metastatic disease by epigenetic mechanisms. Reprogramming of Maspin epigenetic silencing offers a therapeutic potential to lock metastatic progression. Herein we have investigated the ability of the Artificial Transcription Factor 126 (ATF-126) designed to upregulate the Maspin promoter to inhibit tumor progression in pre-established breast tumors in immunodeficient mice. ATF-126 was transduced in the aggressive, mesenchymal-like and triple negative breast cancer line, MDA-MB-231. Induction of ATF expression in vivo by Doxycycline resulted in 50% reduction in tumor growth and totally abolished tumor cell colonization. Genome-wide transcriptional profiles of ATF-induced cells revealed a gene signature that was found over-represented in estrogen receptor positive (ER+) "Normal-like" intrinsic subtype of breast cancer and in poorly aggressive, ER+ luminal A breast cancer cell lines. The comparison transcriptional profiles of ATF-126 and Maspin cDNA defined an overlapping 19-gene signature, comprising novel targets downstream the Maspin signaling cascade. Our data suggest that Maspin up-regulates downstream tumor and metastasis suppressor genes that are silenced in breast cancers, and are normally expressed in the neural system, including CARNS1, SLC8A2 and DACT3. In addition, ATF-126 and Maspin cDNA induction led to the re-activation of tumor suppressive miRNAs also expressed in neural cells, such as miR-1 and miR-34, and to the down-regulation of potential oncogenic miRNAs, such as miR-10b, miR-124, and miR-363. As expected from its over-representation in ER+ tumors, the ATF-126-gene signature predicted favorable prognosis for breast cancer patients. Our results describe for the first time an ATF able to reduce tumor growth and metastatic colonization by epigenetic reactivation of a dormant, normal-like, and more differentiated gene program.
Collapse
|
9
|
Passananti C, Corbi N, Onori A, Di Certo MG, Mattei E. Transgenic mice expressing an artificial zinc finger regulator targeting an endogenous gene. Methods Mol Biol 2010; 649:183-206. [PMID: 20680835 DOI: 10.1007/978-1-60761-753-2_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Zinc finger (ZF) proteins belonging to the Cys2-His2 class provide a simple and versatile framework to design novel artificial transcription factors (ATFs) targeted to the desired genes. Our work is based on ZF ATFs engineered to up-regulate the expression level of the dystrophin-related gene utrophin in Duchenne muscular dystrophy (DMD). In particular, on the basis of the "recognition code" that defines specific rules between zinc finger primary structure and potential DNA-binding sites we engineered and selected a new family of artificial transcription factors, whose DNA-binding domain consists in a three zinc finger peptide called "Jazz." Jazz protein binds specifically the 9 bp DNA sequence (5(')-GCT-GCT-GCG-3(')) present in the promoter region of both the human and mouse utrophin gene. We generated a transgenic mouse expressing Jazz protein fused to the strong transcriptional activation domain VP16 and under the control of the muscle specific promoter of the myosin light chain gene. Vp16-Jazz mice display a strong up-regulation of the utrophin at both mRNA and protein levels. To our knowledge, this represents the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger-based transcription factor.
Collapse
|
10
|
Abstract
Chromatin structure plays a pivotal role in defining which regions of the genome are accessible for effective transcription. Chromatin-remodeling agents are able to relax this structure, facilitating the access of transcription factors into the DNA. Herein, we describe a new method, which combines artificial transcription factors (ATFs) and chromatin-remodeling agents to specifically reactivate silenced regions of the genome and reprogram cellular phenotypes.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
11
|
Abstract
A crucial question in the field of gene regulation is whether the location at which a transcription factor binds influences its effectiveness or the mechanism by which it regulates transcription. Comprehensive transcription factor binding maps are needed to address these issues, and genome-wide mapping is now possible thanks to the technological advances of ChIP-chip and ChIP-seq. This Review discusses how recent genomic profiling of transcription factors gives insight into how binding specificity is achieved and what features of chromatin influence the ability of transcription factors to interact with the genome. It also suggests future experiments that may further our understanding of the causes and consequences of transcription factor-genome interactions.
Collapse
|
12
|
Desantis A, Onori A, Di Certo MG, Mattei E, Fanciulli M, Passananti C, Corbi N. Novel activation domain derived from Che-1 cofactor coupled with the artificial protein Jazz drives utrophin upregulation. Neuromuscul Disord 2009; 19:158-62. [PMID: 19162479 DOI: 10.1016/j.nmd.2008.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/31/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Our aim is to upregulate the expression level of the dystrophin related gene utrophin in Duchenne muscular dystrophy, thus complementing the lack of dystrophin functions. To this end, we have engineered synthetic zinc finger based transcription factors. We have previously shown that the artificial three-zinc finger protein named Jazz fused with the Vp16 activation domain, is able to bind utrophin promoter A and to increase the endogenous level of utrophin in transgenic mice. Here, we report on an innovative artificial protein, named CJ7, that consists of Jazz DNA binding domain fused to a novel activation domain derived from the regulatory multivalent adaptor protein Che-1/AATF. This transcriptional activation domain is 100 amino acids in size and it is very powerful as compared to the Vp16 activation domain. We show that CJ7 protein efficiently promotes transcription and accumulation of the acetylated form of histone H3 on the genomic utrophin promoter locus.
Collapse
Affiliation(s)
- Agata Desantis
- Istituto di Biologia e Patologia Molecolari, CNR, c/o Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci U S A 2008; 105:2319-24. [PMID: 18252819 DOI: 10.1073/pnas.0712177105] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Industrial strains have been traditionally improved by rational approaches and combinatorial methods involving mutagenesis and selection. Recently, other methods have emerged, such as the use of artificial transcription factors and engineering of the native ones. As methods for generating genetic diversity continue to proliferate, the need for quantifying phenotypic diversity and, hence, assessing the potential of various genetic libraries for strain improvement becomes more pronounced. Here, we present a metric based on the quantification of phenotypic diversity, using Lactobacillus plantarum as a model organism. We found that phenotypic diversity can be introduced by mutagenesis of the principal sigma factor, that this diversity can be modulated by tuning the sequence diversity, and that this method compares favorably with commonly used protocols for chemical mutagenesis. The results of the diversity metric here developed also correlated well with the probability of finding improved mutants in the different libraries, as determined by recursive screening under stress. In addition, we subjected our libraries to lactic and inorganic acids and found strains with improved growth in both conditions, with a concomitant increase in lactate productivity.
Collapse
|
14
|
Onori A, Desantis A, Buontempo S, Di Certo MG, Fanciulli M, Salvatori L, Passananti C, Corbi N. The artificial 4-zinc-finger protein Bagly binds human utrophin promoter A at the endogenous chromosomal site and activates transcription. Biochem Cell Biol 2007; 85:358-65. [PMID: 17612630 DOI: 10.1139/o07-015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Our aim is to upregulate the expression of the dystrophin-related gene utrophin in Duchenne muscular dystrophy, in this way complementing the lack of dystrophin function. To achieve utrophin upregulation, we designed and engineered synthetic zinc-finger based transcription factors. We have previously shown that the artificial 3-zinc-finger protein Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from utrophin promoter A. Here we report a novel artificial 4-zinc-finger protein, Bagly, which binds with optimized affinity-specificity to a 12 bp DNA target sequence that is internal to human utrophin promoter A. Bagly was generated adding to Jazz protein an extra-fourth zinc finger, derived from transcription factor YY1. Importantly, the Bagly DNA target sequence is statistically present in the human genome only 210 times, about 60 fewer times than the 9 bp Jazz DNA target sequence. Thanks to its additional zinc-finger domain, Bagly protein shows enhanced transcriptional activity. Moreover, we demonstrated Bagly's effective access and binding to active chromatin in the chromosomal context and its ability to upregulate endogenous utrophin.
Collapse
Affiliation(s)
- Annalisa Onori
- Istituto di Biologia e Patologia Molecolari, CNR, c/o Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mattei E, Corbi N, Di Certo MG, Strimpakos G, Severini C, Onori A, Desantis A, Libri V, Buontempo S, Floridi A, Fanciulli M, Baban D, Davies KE, Passananti C. Utrophin up-regulation by an artificial transcription factor in transgenic mice. PLoS One 2007; 2:e774. [PMID: 17712422 PMCID: PMC1942121 DOI: 10.1371/journal.pone.0000774] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/23/2007] [Indexed: 12/27/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.
Collapse
Affiliation(s)
- Elisabetta Mattei
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
- Italian Association for Cancer Research, Roman Oncogenomic Center, Rome, Italy
| | - Nicoletta Corbi
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Maria Grazia Di Certo
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Georgios Strimpakos
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
| | - Cinzia Severini
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
| | - Annalisa Onori
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Agata Desantis
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Valentina Libri
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Serena Buontempo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Aristide Floridi
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
- Laboratory B, Regina Elena Cancer Institute, Rome, Italy
| | - Maurizio Fanciulli
- Italian Association for Cancer Research, Roman Oncogenomic Center, Rome, Italy
- Laboratory B, Regina Elena Cancer Institute, Rome, Italy
| | - Dilair Baban
- Department of Physiology, Anatomy and Genetics, Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Claudio Passananti
- Italian Association for Cancer Research, Roman Oncogenomic Center, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Beltran A, Parikh S, Liu Y, Cuevas BD, Johnson GL, Futscher BW, Blancafort P. Re-activation of a dormant tumor suppressor gene maspin by designed transcription factors. Oncogene 2006; 26:2791-8. [PMID: 17057734 DOI: 10.1038/sj.onc.1210072] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The controlled and specific re-activation of endogenous tumor suppressors in cancer cells represents an important therapeutic strategy to block tumor growth and subsequent progression. Other than ectopic delivery of tumor suppressor-encoded cDNA, there are no therapeutic tools able to specifically re-activate tumor suppressor genes that are silenced in tumor cells. Herein, we describe a novel approach to specifically regulate dormant tumor suppressors in aggressive cancer cells. We have targeted the Mammary Serine Protease Inhibitor (maspin) (SERPINB5) tumor suppressor, which is silenced by transcriptional and aberrant promoter methylation in aggressive epithelial tumors. Maspin is a multifaceted protein, regulating tumor cell homeostasis through inhibition of cell growth, motility and invasion. We have constructed artificial transcription factors (ATFs) made of six zinc-finger (ZF) domains targeted against 18-base pair (bp) unique sequences in the maspin promoter. The ZFs were linked to the activator domain VP64 and delivered in breast tumor cells. We found that the designed ATFs specifically interact with their cognate targets in vitro with high affinity and selectivity. One ATF was able to re-activate maspin in cell lines that comprise a maspin promoter silenced by epigenetic mechanisms. Consistently, we found that this ATF was a powerful inducer of apoptosis and was able to knock down tumor cell invasion in vitro. Moreover, this ATF was able to suppress MDA-MB-231 growth in a xenograft breast cancer model in nude mice. Our work suggests that ATFs could be used in cancer therapeutics as novel molecular switches to re-activate dormant tumor suppressors.
Collapse
Affiliation(s)
- A Beltran
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | | | |
Collapse
|