1
|
Yang X, Qin X, Ji H, Du L, Li M. Constructing firefly luciferin bioluminescence probes for in vivo imaging. Org Biomol Chem 2022; 20:1360-1372. [PMID: 35080225 DOI: 10.1039/d1ob01940f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Bioluminescence imaging (BLI) is a widely applied visual approach for real-time detecting many physiological and pathological processes in a variety of biological systems. Based on the caging strategy, lots of bioluminescent probes have been well developed. While the targets react with recognizable groups, caged luciferins liberate luciferase substrates, which react with luciferase generating a bioluminescent response. Among the various bioluminescent systems, the most widely utilized bioluminescent system is the firefly luciferin system. The H and carboxylic acid of luciferin are critically caged sites. The introduced self-immolative linker extends the applications of probes. Firefly luciferin system probes have been successfully applied for analyzing physiological processes, monitoring the environment, diagnosing diseases, screening candidate drugs, and evaluating the therapeutic effect. Here, we systematically review the general design strategies of firefly luciferin bioluminescence probes and their applications. Bioluminescence probes provide a new approach for facilitating investigation in a diverse range of fields. It inspires us to explore more robust light emission luciferin and novel design strategies to develop bioluminescent probes.
Collapse
Affiliation(s)
- Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huimin Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Jacobson KA, IJzerman AP, Müller CE. Medicinal chemistry of P2 and adenosine receptors: Common scaffolds adapted for multiple targets. Biochem Pharmacol 2021; 187:114311. [PMID: 33130128 PMCID: PMC8081756 DOI: 10.1016/j.bcp.2020.114311] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Prof. Geoffrey Burnstock originated the concept of purinergic signaling. He demonstrated the interactions and biological roles of ionotropic P2X and metabotropic P2Y receptors. This review paper traces the historical origins of many currently used antagonists and agonists for P2 receptors, as well as adenosine receptors, in early attempts to identify ligands for these receptors - prior to the use of chemical libraries for screening. Rather than presenting a general review of current purinergic ligands, we focus on common chemical scaffolds (privileged scaffolds) that can be adapted for multiple receptor targets. By carefully analyzing the structure activity relationships, one can direct the selectivity of these scaffolds toward different receptor subtypes. For example, the weak and non-selective P2 antagonist reactive blue 2 (RB-2) was derivatized using combinatorial synthetic approaches, leading to the identification of selective P2Y2, P2Y4, P2Y12 or P2X2 receptor antagonists. A P2X4 antagonist NC-2600 is in a clinical trial, and A3 adenosine agonists show promise, for chronic pain. P2X7 antagonists have been in clinical trials for depression (JNJ-54175446), inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, inflammatory pain and chronic obstructive pulmonary disease (COPD). P2X3 antagonists are in clinical trials for chronic cough, and an antagonist named after Burnstock, gefapixant, is expected to be the first P2X3 antagonist filed for approval. We are seeing that the vision of Prof. Burnstock to use purinergic signaling modulators, most recently at P2XRs, for treating disease is coming to fruition.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, the Netherlands
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
3
|
Perperopoulou F, Pouliou F, Labrou NE. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Crit Rev Biotechnol 2017; 38:511-528. [PMID: 28936894 DOI: 10.1080/07388551.2017.1375890] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutathione transferases (GSTs, EC 2.5.1.18) are a widespread family of enzymes that play a central role in the detoxification, metabolism, and transport or sequestration of endogenous or xenobiotic compounds. During the last two decades, delineation of the important structural and catalytic features of GSTs has laid the groundwork for engineering GSTs, involving both rational and random approaches, aiming to create new variants with new or altered properties. These approaches have expanded the usefulness of native GSTs, not only for understanding the fundamentals of molecular detoxification mechanisms, but also for the development medical, analytical, environmental, and agricultural applications. This review article attempts to summarize successful examples and current developments on GST engineering, highlighting in parallel the recent knowledge gained on their phylogenetic relationships, structural/catalytic features, and biotechnological applications.
Collapse
Affiliation(s)
- Fereniki Perperopoulou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| | - Fotini Pouliou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| | - Nikolaos E Labrou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| |
Collapse
|
4
|
Lea WA, O'Neil PT, Machen AJ, Naik S, Chaudhri T, McGinn-Straub W, Tischer A, Auton MT, Burns JR, Baldwin MR, Khar KR, Karanicolas J, Fisher MT. Chaperonin-Based Biolayer Interferometry To Assess the Kinetic Stability of Metastable, Aggregation-Prone Proteins. Biochemistry 2016; 55:4885-908. [PMID: 27505032 DOI: 10.1021/acs.biochem.6b00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy for decreasing disease pathologies caused by protein folding defects or deleterious kinetic transitions. Current methods of examining binding of a ligand to these marginally stable native states are limited because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, and multidomain proteins) and metastable proteins (e.g., low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein, immobilized on a BLI biosensor, to increasing denaturant concentrations (urea or GuHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remains is detected by an increased level of GroEL binding. Because this kinetic denaturant pulse is brief, the amplitude of binding of GroEL to the immobilized protein depends on the duration of the exposure to the denaturant, the concentration of the denaturant, wash times, and the underlying protein unfolding-refolding kinetics; fixing all other parameters and plotting the GroEL binding amplitude versus denaturant pulse concentration result in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein manifests as a decreased level of GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be used to identify small molecules and/or solution conditions that can stabilize or destabilize thermally stable proteins, multidomain proteins, oligomeric proteins, and, most importantly, aggregation-prone metastable proteins.
Collapse
Affiliation(s)
- Wendy A Lea
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Pierce T O'Neil
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Alexandra J Machen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Subhashchandra Naik
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | | | - Wesley McGinn-Straub
- fortéBIO (a division of Pall Life Sciences) , Menlo Park, California 94025, United States
| | - Alexander Tischer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic , Rochester, Minnesota 55902, United States
| | - Matthew T Auton
- Division of Hematology, Department of Internal Medicine, Mayo Clinic , Rochester, Minnesota 55902, United States
| | - Joshua R Burns
- Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri 65212, United States
| | - Michael R Baldwin
- Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri 65212, United States
| | - Karen R Khar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - John Karanicolas
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
5
|
Huang H, Yao H, Liu JY, Samra AI, Kamita SG, Cornel AJ, Hammock BD. Development of pyrethroid-like fluorescent substrates for glutathione S-transferase. Anal Biochem 2012; 431:77-83. [PMID: 23000005 DOI: 10.1016/j.ab.2012.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 11/30/2022]
Abstract
The availability of highly sensitive substrates is critical for the development of precise and rapid assays for detecting changes in glutathione S-transferase (GST) activity that are associated with GST-mediated metabolism of insecticides. In this study, six pyrethroid-like compounds were synthesized and characterized as substrates for insect and mammalian GSTs. All of the substrates were esters composed of the same alcohol moiety, 7-hydroxy-4-methylcoumarin, and acid moieties that structurally mimic some commonly used pyrethroid insecticides, including cypermethrin and cyhalothrin. CpGSTD1, a recombinant Delta class GST from the mosquito Culex pipiens pipiens, metabolized our pyrethroid-like substrates with both chemical and geometric preference (i.e., the cis-isomers were metabolized at 2- to 5-fold higher rates than the corresponding trans-isomers). A GST preparation from mouse liver also metabolized most of our pyrethroid-like substrates with both chemical and geometric preference but at 10- to 170-fold lower rates. CpGSTD1 and mouse GSTs metabolized 1-chloro-2,4-dinitrobenezene (CDNB), a general GST substrate, at more than 200-fold higher rates than our novel pyrethroid-like substrates. There was a 10-fold difference in the specificity constant (k(cat)/K(M) ratio) of CpGSTD1 for CDNB and those of CpGSTD1 for cis-DCVC and cis-TFMCVC, suggesting that cis-DCVC and cis-TFMCVC may be useful for the detection of GST-based metabolism of pyrethroids in mosquitoes.
Collapse
Affiliation(s)
- Huazhang Huang
- Department of Entomology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Ito M, Shibata A, Zhang J, Hiroshima M, Sako Y, Nakano Y, Kojima-Aikawa K, Mannervik B, Shuto S, Ito Y, Morgenstern R, Abe H. Universal caging group for the in-cell detection of glutathione transferase applied to 19F NMR and bioluminogenic probes. Chembiochem 2012; 13:1428-32. [PMID: 22689392 DOI: 10.1002/cbic.201200242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Mika Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lea WA, Simeonov A. Differential scanning fluorometry signatures as indicators of enzyme inhibitor mode of action: case study of glutathione S-transferase. PLoS One 2012; 7:e36219. [PMID: 22558390 PMCID: PMC3340335 DOI: 10.1371/journal.pone.0036219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/29/2012] [Indexed: 01/02/2023] Open
Abstract
Differential scanning fluorometry (DSF), also referred to as fluorescence thermal shift, is emerging as a convenient method to evaluate the stabilizing effect of small molecules on proteins of interest. However, its use in the mechanism of action studies has received far less attention. Herein, the ability of DSF to report on inhibitor mode of action was evaluated using glutathione S-transferase (GST) as a model enzyme that utilizes two distinct substrates and is known to be subject to a range of inhibition modes. Detailed investigation of the propensity of small molecule inhibitors to protect GST from thermal denaturation revealed that compounds with different inhibition modes displayed distinct thermal shift signatures when tested in the presence or absence of the enzyme's native co-substrate glutathione (GSH). Glutathione-competitive inhibitors produced dose-dependent thermal shift trendlines that converged at high compound concentrations. Inhibitors acting via the formation of glutathione conjugates induced a very pronounced stabilizing effect toward the protein only when GSH was present. Lastly, compounds known to act as noncompetitive inhibitors exhibited parallel concentration-dependent trends. Similar effects were observed with human GST isozymes A1-1 and M1-1. The results illustrate the potential of DSF as a tool to differentiate diverse classes of inhibitors based on simple analysis of co-substrate dependency of protein stabilization.
Collapse
Affiliation(s)
- Wendy A Lea
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
8
|
Huang HH, Rigouin C, Williams DL. The redox biology of schistosome parasites and applications for drug development. Curr Pharm Des 2012; 18:3595-3611. [PMID: 22607149 PMCID: PMC3638776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/09/2012] [Indexed: 05/31/2023]
Abstract
Schistosomiasis caused by Schistosoma spp. is a serious public health concern, especially in sub-Saharan Africa. Praziquantel is the only drug currently administrated to treat this disease. However, praziquantel-resistant parasites have been identified in endemic areas and can be generated in the laboratory. Therefore, it is essential to find new therapeutics. Antioxidants are appealing drug targets. In order to survive in their hosts, schistosomes are challenged by reactive oxygen species from intrinsic and extrinsic sources. Schistosome antioxidant enzymes have been identified as essential proteins and novel drug targets and inhibition of the antioxidant response can lead to parasite death. Because the organization of the redox network in schistosomes is significantly different from that in humans, new drugs are being developed targeting schistosome antioxidants. In this paper the redox biology of schistosomes is discussed and their potential use as drug targets is reviewed. It is hoped that compounds targeting parasite antioxidant responses will become clinically relevant drugs in the near future.
Collapse
Affiliation(s)
| | | | - David L. Williams
- Correspondence should be addressed to: Dr. David L. Williams, Department of Microbiology and Immunology, Rush University Medical Center, Chicago, IL 60612-3824 . Phone: (312) 942-1375; Fax: (312) 942-2808
| |
Collapse
|
9
|
A new colorimetric assay for glutathione transferase-catalyzed halogen ion release for high-throughput screening. Anal Biochem 2010; 405:201-6. [DOI: 10.1016/j.ab.2010.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 11/16/2022]
|
10
|
Kato M, Chiba T, Li M, Hanyu Y. Bioluminescence assay for detecting cell surface membrane protein expression. Assay Drug Dev Technol 2010; 9:31-9. [PMID: 20836709 DOI: 10.1089/adt.2010.0278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a method to measure the amounts of cell surface-expressed membrane proteins with bioluminescence. Dinoflagellate luciferase was expressed on the surface of a mammalian cell as a chimeric fusion protein with a membrane protein of interest. Using a membrane-impermeable substrate to quantify the membrane-displayed luciferase, the expression of the membrane protein on the cell surface was determined. By inclusion of a quenching step for the luminescent activity of luciferase on the cell surface, we were able to monitor the membrane protein expression kinetics by measuring the luminescence recovery from the cell surface after quenching. The reported methods provide a convenient way to monitor the kinetics of expression and transport of membrane proteins to the cell surface. It is applicable to the high-throughput analysis of drugs or drug candidates concerning their effects on membrane protein expression.
Collapse
Affiliation(s)
- Mieko Kato
- Signaling Molecules Research Group, Neuroscience Research Institute, National Institutes of Advanced Industrial Science and Technology, Tsukuba, 1-1-1 Higashi, Tsukuba, Japan
| | | | | | | |
Collapse
|