1
|
Yadav M, Sarkar S, Olymon K, Ray SK, Kumar A. Combined In Silico and In Vitro Study to Reveal the Structural Insights and Nucleotide-Binding Ability of the Transcriptional Regulator PehR from the Phytopathogen Ralstonia solanacearum. ACS OMEGA 2023; 8:34499-34515. [PMID: 37779998 PMCID: PMC10535256 DOI: 10.1021/acsomega.3c03175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
The transcriptional regulator PehR regulates the synthesis of the extracellular plant cell wall-degrading enzyme polygalacturonase, which is essential in the bacterial wilt of plants caused by one of the most devastating plant phytopathogens, Ralstonia solanacearum. The bacterium has a wide global distribution infecting many different plant species, resulting in massive agricultural and economic losses. Because the PehR molecular structure has not yet been determined and the structural consequences of PehR on ligand binding have not been thoroughly investigated, we have used an in silico approach combined with in vitro experiments for the first time to characterize the PehR regulator from a local isolate (Tezpur, Assam, India) of the phytopathogenic bacterium R. solanacearum F1C1. In this study, an in silico approach was employed to model the 3D structure of the PehR regulator, followed by the binding analysis of different ligands against this regulatory protein. Molecular docking studies suggest that ATP has the highest binding affinity for the PehR regulator. By using molecular dynamics (MD) simulation analysis, involving root-mean-square deviation, root-mean-square fluctuations, hydrogen bonding, radius of gyration, solvent-accessible surface area, and principal component analysis, it was possible to confirm the sudden conformational changes of the PehR regulator caused by the presence of ATP. We used an in vitro approach to further validate the formation of the PehR-ATP complex. In this approach, recombinant DNA technology was used to clone, express, and purify the gene encoding the PehR regulator from R. solanacearum F1C1. Purified PehR was used in ATP-binding experiments using fluorescence spectroscopy and Fourier transform infrared spectroscopy, the outcomes of which showed a potent binding to ATP. The putative PehR-ATP-binding analysis revealed the importance of the amino acids Lys190, Glu191, Arg192, Arg375, and Asp378 for the ATP-binding process, but further study is required to confirm this. It will be simpler to comprehend the catalytic mechanisms of a crucial PehR regulator process in R. solanacearum with the aid of the ATP-binding process hints provided by these structural biology applications.
Collapse
Affiliation(s)
- Mohit Yadav
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India
| | - Sharmilee Sarkar
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India
| | - Kaushika Olymon
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India
| | - Suvendra Kumar Ray
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India
| | - Aditya Kumar
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam 784028, Assam, India
| |
Collapse
|
2
|
Structure of VanS from vancomycin-resistant enterococci: A sensor kinase with weak ATP binding. J Biol Chem 2023; 299:103001. [PMID: 36764524 PMCID: PMC10017428 DOI: 10.1016/j.jbc.2023.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The VanRS two-component system regulates the resistance phenotype of vancomycin-resistant enterococci. VanS is a sensor histidine kinase that responds to the presence of vancomycin by autophosphorylating and subsequently transferring the phosphoryl group to the response regulator, VanR. The phosphotransfer activates VanR as a transcription factor, which initiates the expression of resistance genes. Structural information about VanS proteins has remained elusive, hindering the molecular-level understanding of their function. Here, we present X-ray crystal structures for the catalytic and ATP-binding (CA) domains of two VanS proteins, derived from vancomycin-resistant enterococci types A and C. Both proteins adopt the canonical Bergerat fold that has been observed for CA domains of other prokaryotic histidine kinases. We attempted to determine structures for the nucleotide-bound forms of both proteins; however, despite repeated efforts, these forms could not be crystallized, prompting us to measure the proteins' binding affinities for ATP. Unexpectedly, both CA domains displayed low affinities for the nucleotide, with KD values in the low millimolar range. Since these KD values are comparable to intracellular ATP concentrations, this weak substrate binding could reflect a way of regulating expression of the resistance phenotype.
Collapse
|
3
|
Longauer B, Bódis E, Lukács A, Barkó S, Nyitrai M. Solubility and Thermal Stability of Thermotoga maritima MreB. Int J Mol Sci 2022; 23:ijms232416044. [PMID: 36555681 PMCID: PMC9785925 DOI: 10.3390/ijms232416044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The basis of MreB research is the study of the MreB protein from the Thermotoga maritima species, since it was the first one whose crystal structure was described. Since MreB proteins from different bacterial species show different polymerisation properties in terms of nucleotide and salt dependence, we conducted our research in this direction. For this, we performed measurements based on tryptophan emission, which were supplemented with temperature-dependent and chemical denaturation experiments. The role of nucleotide binding was studied through the fluorescent analogue TNP-ATP. These experiments show that Thermotoga maritima MreB is stabilised in the presence of low salt buffer and ATP. In the course of our work, we developed a new expression and purification procedure that allows us to obtain a large amount of pure, functional protein.
Collapse
Affiliation(s)
- Beáta Longauer
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Emőke Bódis
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
| | - Szilvia Barkó
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Szigeti Str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Center, University of Pécs, H-7622 Pécs, Hungary
- Correspondence:
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Szigeti Str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Center, University of Pécs, H-7622 Pécs, Hungary
| |
Collapse
|
4
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Woodbury DJ, Whitt EC, Coffman RE. A review of TNP-ATP in protein binding studies: benefits and pitfalls. BIOPHYSICAL REPORTS 2021; 1:100012. [PMID: 36425312 PMCID: PMC9680771 DOI: 10.1016/j.bpr.2021.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
We review 50 years of use of 2',3'-O-trinitrophenyl (TNP)-ATP, a fluorescently tagged ATP analog. It has been extensively used to detect binding interactions of ATP to proteins and to measure parameters of those interactions such as the dissociation constant, Kd, or inhibitor dissociation constant, Ki. TNP-ATP has also found use in other applications, for example, as a fluorescence marker in microscopy, as a FRET pair, or as an antagonist (e.g., of P2X receptors). However, its use in protein binding studies has limitations because the TNP moiety often enhances binding affinity, and the fluorescence changes that occur with binding can be masked or mimicked in unexpected ways. The goal of this review is to provide a clear perspective of the pros and cons of using TNP-ATP to allow for better experimental design and less ambiguous data in future experiments using TNP-ATP and other TNP nucleotides.
Collapse
Affiliation(s)
- Dixon J. Woodbury
- Department of Cell Biology and Physiology
- Neuroscience Center, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|
6
|
Abstract
The bacterial type IV pilus (T4P) is a prominent virulence factor in many significant human pathogens, some of which have become increasingly antibiotic resistant. Antivirulence chemotherapeutics are considered a promising alternative to antibiotics because they target the disease process instead of bacterial viability. However, a roadblock to the discovery of anti-T4P compounds is the lack of a high-throughput screen (HTS) that can be implemented relatively easily and economically. Here, we describe the first HTS for the identification of inhibitors specifically against the T4P assembly ATPase PilB in vitro. Chloracidobacterium thermophilum PilB (CtPilB) had been demonstrated to have robust ATPase activity and the ability to bind its expected ligands in vitro. We utilized CtPilB and MANT-ATP, a fluorescent ATP analog, to develop a binding assay and adapted it for an HTS. As a proof of principle, we performed a pilot screen with a small compound library of kinase inhibitors and identified quercetin as a PilB inhibitor in vitro. Using Myxococcus xanthus as a model bacterium, we found quercetin to reduce its T4P-dependent motility and T4P assembly in vivo. These results validated our HTS as effective in identifying PilB inhibitors. This assay may prove valuable in seeking leads for the development of antivirulence chemotherapeutics against PilB, an essential and universal component of all bacterial T4P systems. IMPORTANCE Many bacterial pathogens use their type IV pili (T4P) to facilitate and maintain infection of a human host. Small chemical compounds that inhibit the production or assembly of T4P hold promise in the treatment and prevention of infections, especially in the era of increasing threats from antibiotic-resistant bacteria. However, few chemicals are known to have inhibitory or anti-T4P activity. Their identification has not been easy due to the lack of a method for the screening of compound collections or libraries on a large scale. Here, we report the development of an assay that can be scaled up to screen compound libraries for inhibitors of a critical T4P assembly protein. We further demonstrate that it is feasible to use whole cells to examine potential inhibitors for their activity against T4P assembly in a bacterium.
Collapse
|
7
|
Khamrui S, Ung PMU, Secor C, Schlessinger A, Lazarus MB. High-Resolution Structure and Inhibition of the Schizophrenia-Linked Pseudokinase ULK4. J Am Chem Soc 2019; 142:33-37. [PMID: 31841327 DOI: 10.1021/jacs.9b10458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ULK (UNC51-like) enzymes are a family of mammalian kinases that have critical roles in autophagy and development. While ULK1, ULK2, and ULK3 have been characterized, very little is known about ULK4. However, recently, deletions in ULK4 have been genetically linked to increased susceptibility to developing schizophrenia, a devastating neuropsychiatric disease with high heritability but few genes identified. Interestingly, ULK4 is a pseudokinase with some unusual mutations in the kinase catalytic motifs. Here, we report the first structure of the human ULK4 kinase at high resolution and show that although ULK4 has no apparent phosphotransfer activity, it can strongly bind ATP. We find an unusual mechanism for binding ATP in a Mg2+-independent manner, including a rare hydrophobic bridge in the active site. In addition, we develop two assays for ATP binding to ULK4, perform a virtual and experimental screen to identify small-molecule binders of ULK4, and identify several novel scaffolds that bind ULK4 and can lead the way to more selective small molecules that may help shed light on the function of this enigmatic protein.
Collapse
Affiliation(s)
- Susmita Khamrui
- Department of Pharmacological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Peter M U Ung
- Department of Pharmacological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Department of Pharmacology , Yale University , New Haven , Connecticut 06510 , United States
| | - Cody Secor
- Department of Pharmacological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Avner Schlessinger
- Department of Pharmacological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Michael B Lazarus
- Department of Pharmacological Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| |
Collapse
|
8
|
LaConte LEW, Srivastava S, Mukherjee K. Probing Protein Kinase-ATP Interactions Using a Fluorescent ATP Analog. Methods Mol Biol 2018; 1647:171-183. [PMID: 28809002 DOI: 10.1007/978-1-4939-7201-2_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eukaryotic protein kinases are an intensely investigated class of enzymes which have garnered attention due to their usefulness as drug targets. Determining the regulation of ATP binding to a protein kinase is not only critical for understanding function in a cellular context but also for designing kinase-specific molecular inhibitors. Here, we provide a general procedure for characterizing ATP binding to eukaryotic protein kinases. The protocol can be adapted to identify the conditions under which a particular kinase is activated. The approach is simple, requiring only a fluorescent ATP analog such as TNP-ATP or MANT-ATP and an instrument to monitor changes in fluorescence. Although the interaction kinetics between a kinase and a given ATP analog may differ from that of native ATP, this disadvantage is offset by the ease of performing and interpreting this assay. Importantly, it can be optimized to probe a large variety of conditions under which the kinase-nucleotide binding might be affected.
Collapse
Affiliation(s)
- Leslie E W LaConte
- Virginia Tech Carilion Research Institute, Roanoke, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Sarika Srivastava
- Virginia Tech Carilion Research Institute, Roanoke, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Konark Mukherjee
- Virginia Tech Carilion Research Institute, Roanoke, 2 Riverside Circle, Roanoke, VA, 24016, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
9
|
Vo CD, Shebert HL, Zikovich S, Dryer RA, Huang TP, Moran LJ, Cho J, Wassarman DR, Falahee BE, Young PD, Gu GH, Heinl JF, Hammond JW, Jackvony TN, Frederick TE, Blair JA. Repurposing Hsp90 inhibitors as antibiotics targeting histidine kinases. Bioorg Med Chem Lett 2017; 27:5235-5244. [PMID: 29110989 DOI: 10.1016/j.bmcl.2017.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/05/2017] [Accepted: 10/18/2017] [Indexed: 01/15/2023]
Abstract
To address the growing need for new antimicrobial agents, we explored whether inhibition of bacterial signaling machinery could inhibit bacterial growth. Because bacteria rely on two-component signaling systems to respond to environmental changes, and because these systems are both highly conserved and mediated by histidine kinases, inhibiting histidine kinases may provide broad spectrum antimicrobial activity. The histidine kinase ATP binding domain is conserved with the ATPase domain of eukaryotic Hsp90 molecular chaperones. To find a chemical scaffold for compounds that target histidine kinases, we leveraged this conservation. We screened ATP competitive Hsp90 inhibitors against CckA, an essential histidine kinase in Caulobacter crescentus that controls cell growth, and showed that the diaryl pyrazole is a promising scaffold for histidine kinase inhibition. We synthesized a panel of derivatives and found that they inhibit the histidine kinases C. crescentus CckA and Salmonella PhoQ but not C. crescentus DivJ; and they inhibit bacterial growth in both Gram-negative and Gram-positive bacterial strains.
Collapse
Affiliation(s)
- Chau D Vo
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Hanna L Shebert
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Shannon Zikovich
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Rebecca A Dryer
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Tony P Huang
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Lindsey J Moran
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Juno Cho
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Douglas R Wassarman
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Bryn E Falahee
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Peter D Young
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Garrick H Gu
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - James F Heinl
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - John W Hammond
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Taylor N Jackvony
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA
| | - Thomas E Frederick
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jimmy A Blair
- Williams College, Department of Chemistry, 47 Lab Campus Drive, Williamstown, MA 01267, USA.
| |
Collapse
|
10
|
Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel. Nat Commun 2017; 8:876. [PMID: 29026074 PMCID: PMC5638823 DOI: 10.1038/s41467-017-00887-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/02/2017] [Indexed: 12/29/2022] Open
Abstract
P2X receptors are non-selective cation channels gated by extracellular ATP, and the P2X7 receptor subtype plays a crucial role in the immune and nervous systems. Altered expression and dysfunctions of P2X7 receptors caused by genetic deletions, mutations, and polymorphic variations have been linked to various diseases, such as rheumatoid arthritis and hypertension. Despite the availability of crystal structures of P2X receptors, the mechanism of competitive antagonist action for P2X receptors remains controversial. Here, we determine the crystal structure of the chicken P2X7 receptor in complex with the competitive P2X antagonist, TNP-ATP. The structure reveals an expanded, incompletely activated conformation of the channel, and identified the unique recognition manner of TNP-ATP, which is distinct from that observed in the previously determined human P2X3 receptor structure. A structure-based computational analysis furnishes mechanistic insights into the TNP-ATP-dependent inhibition. Our work provides structural insights into the functional mechanism of the P2X competitive antagonist. P2X receptors are nonselective cation channels that are gated by extracellular ATP. Here the authors present the crystal structure of chicken P2X7 with its bound competitive antagonist TNP-ATP and give mechanistic insights into TNP-ATP dependent inhibition through further computational analysis and electrophysiology measurements.
Collapse
|
11
|
Xiao Y, Wang Y. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:601-19. [PMID: 25376990 PMCID: PMC5609854 DOI: 10.1002/mas.21447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 05/11/2023]
Abstract
Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.
Collapse
Affiliation(s)
| | - Yinsheng Wang
- Correspondence to: Yinsheng Wang, Department of Chemistry, University of California, Riverside, CA 92521-0403.
| |
Collapse
|
12
|
Pandey MK, DeGrado TR. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging. Am J Cancer Res 2016; 6:571-93. [PMID: 26941849 PMCID: PMC4775866 DOI: 10.7150/thno.14334] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed.
Collapse
|
13
|
de Araujo ED, Alvarez CP, López-Alonso JP, Sooklal CR, Stagljar M, Kanelis V. Phosphorylation-dependent changes in nucleotide binding, conformation, and dynamics of the first nucleotide binding domain (NBD1) of the sulfonylurea receptor 2B (SUR2B). J Biol Chem 2015. [PMID: 26198630 DOI: 10.1074/jbc.m114.636233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The sulfonylurea receptor 2B (SUR2B) forms the regulatory subunit of ATP-sensitive potassium (KATP) channels in vascular smooth muscle. Phosphorylation of the SUR2B nucleotide binding domains (NBD1 and NBD2) by protein kinase A results in increased channel open probability. Here, we investigate the effects of phosphorylation on the structure and nucleotide binding properties of NBD1. Phosphorylation sites in SUR2B NBD1 are located in an N-terminal tail that is disordered. Nuclear magnetic resonance (NMR) data indicate that phosphorylation of the N-terminal tail affects multiple residues in NBD1, including residues in the NBD2-binding site, and results in altered conformation and dynamics of NBD1. NMR spectra of NBD1 lacking the N-terminal tail, NBD1-ΔN, suggest that phosphorylation disrupts interactions of the N-terminal tail with the core of NBD1, a model supported by dynamic light scattering. Increased nucleotide binding of phosphorylated NBD1 and NBD1-ΔN, compared with non-phosphorylated NBD1, suggests that by disrupting the interaction of the NBD core with the N-terminal tail, phosphorylation also exposes the MgATP-binding site on NBD1. These data provide insights into the molecular basis by which phosphorylation of SUR2B NBD1 activates KATP channels.
Collapse
Affiliation(s)
- Elvin D de Araujo
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and
| | - Claudia P Alvarez
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and
| | - Jorge P López-Alonso
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Clarissa R Sooklal
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and
| | - Marijana Stagljar
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Voula Kanelis
- From the Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, and the Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
14
|
Cell fate regulation governed by a repurposed bacterial histidine kinase. PLoS Biol 2014; 12:e1001979. [PMID: 25349992 PMCID: PMC4211667 DOI: 10.1371/journal.pbio.1001979] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/17/2014] [Indexed: 11/19/2022] Open
Abstract
The pathway that regulates asymmetric cell division in Caulobacter involves a signaling kinase whose catalytic output domain has been repurposed as an input sensor of the phosphorylation state of the response regulator – a reversal of the conventional direction of information flow; this allows wiring of simple linear signaling pathways into complex eukaryote-like networks. One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK∼P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation. Across all kingdoms of life the generation of cell-type diversity is the consequence of asymmetry at the point of cell division. The bacterium Caulobacter crescentus divides asymmetrically to produce daughter cells that have distinct morphology and behavior. As in eukaryotes, an unequal distribution of signaling proteins in daughter Caulobacter cells triggers the differential read-out of identical genomes. A critical interaction between two protein molecules – a protein kinase (DivL) and a response regulator (DivK) – is known to occur exclusively in one daughter cell and to thereby regulate differentiation. However, mapping the observed signaling interconnections that drive asymmetric division has been difficult to reconcile with traditional models of bacterial signaling. Here we determine how DivL detects and processes this DivK signal. Although DivL has an architecture that is typical of histidine kinases, which normally act by regulating the phosphorylation state of the appropriate response regulator, DivL's essential functions do not require kinase activity and DivL does not add or remove phosphate from DivK. Instead we find that DivL has converted its output kinase domain into an input sensor domain that specifically detects phosphorylated DivK, and we identify key features of DivL that underlie this specificity. This novel reassignment of sensory functions reverses the conventional kinase-to-response-regulator signaling flow and logically couples linear signaling pathways into complex eukaryote-like networks to regulate cell development.
Collapse
|
15
|
de Araujo ED, Kanelis V. Successful development and use of a thermodynamic stability screen for optimizing the yield of nucleotide binding domains. Protein Expr Purif 2014; 103:38-47. [PMID: 25153533 DOI: 10.1016/j.pep.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 01/09/2023]
Abstract
ATP sensitive potassium (KATP) channels consist of four copies of a pore-forming inward rectifying potassium channel (Kir6.1 or Kir6.2) and four copies of a sulfonylurea receptor (SUR1, SUR2A, or SUR2B). SUR proteins are members of the ATP-binding cassette superfamily of proteins. Binding of ATP to the Kir6.x subunit mediates channel inhibition, whereas MgATP binding and hydrolysis at the SUR NBDs results in channel opening. Mutations in SUR1 and SUR2A NBDs cause diseases of insulin secretion and cardiac disorders, respectively, underlying the importance of studying the NBDs. Although purification of SUR2A NBD1 in a soluble form is possible, the lack of long-term sample stability of the protein in a concentrated form has precluded detailed studies of the protein aimed at gaining a molecular-level understanding of how SUR mutations cause disease. Here we use a convenient and cost-effective thermodynamic screening method to probe stabilizing conditions for SUR2A NBD1. Results from the screen are used to alter the purification protocol to allow for significantly increased yields of the purified protein. In addition, the screen provides strategies for long-term storage of NBD1 and generating NBD1 samples at high concentrations suitable for NMR studies. NMR spectra of NBD1 with MgAMP-PNP are of higher quality compared to using MgATP, indicating that MgAMP-PNP be used as the ligand in future NMR studies. The screen presented here can be expanded to using different additives and can be employed to enhance purification yields, sample life times, and storage of other low stability nucleotide binding domains, such as GTPases.
Collapse
Affiliation(s)
- Elvin D de Araujo
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada
| | - Voula Kanelis
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
16
|
Xiao Y, Ji D, Guo L, Wang Y. Comprehensive characterization of (S)GTP-binding proteins by orthogonal quantitative (S)GTP-affinity profiling and (S)GTP/GTP competition assays. Anal Chem 2014; 86:4550-8. [PMID: 24689502 PMCID: PMC4014148 DOI: 10.1021/ac500588q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/01/2014] [Indexed: 11/30/2022]
Abstract
Thiopurine drugs are widely used as antileukemic drugs and immunosuppressive agents, and 6-thioguanosine triphosphate ((S)GTP) is a major metabolite for these drugs. Recent studies have suggested that thiopurine drugs may exert their cytotoxic effects partly through binding of (S)GTP to a GTP-binding protein, Rac1. However, it remains unclear whether (S)GTP can also bind to other cellular proteins. Here, we introduced an orthogonal approach, encompassing nucleotide-affinity profiling and nucleotide-binding competition assays, to characterize comprehensively (S)GTP-binding proteins along with the specific binding sites from the entire human proteome. With the simultaneous use of (S)GTP and GTP affinity probes, we identified 165 (S)GTP-binding proteins that are involved in several different biological processes. We also examined the binding selectivities of these proteins toward (S)GTP and GTP, which allowed for the revelation of the relative binding affinities of the two nucleotides toward the nucleotide-binding motif sequence of proteins. Our results suggest that (S)GTP mainly targets GTPases, with strong binding affinities observed for multiple heterotrimeric G proteins. We also demonstrated that (S)GTP binds to several cyclin-dependent kinases (CDKs), which may perturb the CDK-mediated phosphorylation and cell cycle progression. Together, this represents the first comprehensive characterization of (S)GTP-binding property for the entire human proteome. We reason that a similar strategy can be generally employed for the future characterization of the interaction of other modified nucleotides with the global proteome.
Collapse
Affiliation(s)
- Yongsheng Xiao
- Department of Chemistry and Environmental Toxicology Graduate
Program, University of California, Riverside, California 92521-0403, United States
| | - Debin Ji
- Department of Chemistry and Environmental Toxicology Graduate
Program, University of California, Riverside, California 92521-0403, United States
| | - Lei Guo
- Department of Chemistry and Environmental Toxicology Graduate
Program, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry and Environmental Toxicology Graduate
Program, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
17
|
Abstract
Inhibitors of bacterial histidine kinases that globally deactivate bacterial signaling may offer a new offensive against antibiotic resistance.
Collapse
Affiliation(s)
- Kaelyn E Wilke
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
18
|
Shimada-Shimizu N, Hisamitsu T, Nakamura TY, Hirayama N, Wakabayashi S. Na+/H+ exchanger 1 is regulated via its lipid-interacting domain, which functions as a molecular switch: a pharmacological approach using indolocarbazole compounds. Mol Pharmacol 2013; 85:18-28. [PMID: 24136992 DOI: 10.1124/mol.113.089268] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The plasma membrane Na(+)/H(+) exchanger 1 (NHE1) is rapidly activated in response to various stimuli. The membrane-proximal cytoplasmic region (∼60 residues), termed the lipid-interacting domain (LID), is an important regulatory domain of NHE1. Here, we used a pharmacological approach to further characterize the role of LID in the regulation of NHE1. Pharmacological analysis using staurosporine-like indolocarbazole and bisindolylmaleimide compounds suggested that the phorbol ester- and receptor agonist-induced activation of NHE1 occurs through a protein kinase C-independent mechanism. In particular, only indolocarbazole compounds that inhibited NHE1 activation were able to interact with the LID, suggesting that the inhibition of NHE1 activation is achieved through the direct action of these compounds on the LID. Furthermore, in addition to phorbol esters and a receptor agonist, okadaic acid and hyperosmotic stress, which are known to activate NHE1 through unknown mechanisms, were found to promote membrane association of the LID concomitant with NHE1 activation; these effects were inhibited by staurosporine, as well as by a mutation in the LID. Binding experiments using the fluorescent ATP analog trinitrophenyl ATP revealed that ATP and the NHE1 activator phosphatidylinositol 4,5-bisphosphate bind competitively to the LID. These findings suggest that modulation of NHE1 activity by various activators and inhibitors occurs through the direct binding of these molecules to the LID, which alters the association of the LID with the plasma membrane.
Collapse
Affiliation(s)
- Naoko Shimada-Shimizu
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (N.S.-S., T.H., T.Y.N., S.W.); and Basic Medical Science & Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan (N.H.)
| | | | | | | | | |
Collapse
|
19
|
Sinnett SE, Sexton JZ, Brenman JE. A High Throughput Assay for Discovery of Small Molecules that Bind AMP-activated Protein Kinase (AMPK). CURRENT CHEMICAL GENOMICS 2013; 7:30-8. [PMID: 24396733 PMCID: PMC3854666 DOI: 10.2174/2213988501307010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 11/22/2022]
Abstract
AMPK is a conserved heterotrimeric serine-threonine kinase that regulates anabolic and catabolic pathways in eukaryotes. Its central role in cellular and whole body metabolism makes AMPK a commonly proposed therapeutic target for illnesses characterized by abnormal energy regulation, including cancer and diabetes. Many AMPK modulators, however, produce AMPK-independent effects. To identify drugs that modulate AMPK activity independent of the canonical ATP-binding pocket found throughout the kinome, we designed a robust fluorescence-based high throughput screening assay biased toward the identification of molecules that bind the regulatory region of AMPK through displacement of MANT-ADP, a fluorescent ADP analog. Automated pin tools were used to rapidly transfer small molecules to a low volume assay mixture on 384-well plates. Prior to assay validation, we completed a full assay optimization to maximize the signal-to-background and reduce variability for robust detection of small molecules displacing MANT-ADP. After validation, we screened 13,120 molecules and identified 3 positive hits that dose-dependently inhibited the protein-bound signal of MANT-ADP in the presence of both full-length AMPK and the truncated “regulatory fragment” of AMPK, which is missing the kinase active site. The average Z’-factor for the screen was 0.55 and the compound confirmation rate was 60%. Thus, this fluorescence-based assay may be paired with in vitro kinase assays and cell-based assays to help identify molecules that selectively regulate AMPK with fewer off-target effects on other kinases.
Collapse
Affiliation(s)
- Sarah E Sinnett
- Neurobiology Curriculum, University of North Carolina Chapel Hill (UNC)
| | - Jonathan Z Sexton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University
| | - Jay E Brenman
- UNC Neuroscience Center; ; Department of Cell Biology and Physiology, UNC
| |
Collapse
|
20
|
Xiao Y, Guo L, Wang Y. Isotope-coded ATP probe for quantitative affinity profiling of ATP-binding proteins. Anal Chem 2013; 85:7478-86. [PMID: 23841533 DOI: 10.1021/ac401415z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ATP-binding proteins play significant roles in numerous cellular processes. Here, we introduced a novel isotope-coded ATP-affinity probe (ICAP) as an acylating agent to simultaneously enrich and incorporate isotope label to ATP-binding proteins. By taking advantage of the quantitative capability of this isotope-coded probe, we devised an affinity profiling strategy to comprehensively characterize ATP-protein interactions at the entire proteome scale. False-positive identification of ATP-binding sites derived from nonspecific labeling was effectively minimized through the comparison of the labeling behaviors of lysine residues with the use of low and high concentrations of the ICAP reagents. A total of 258 previously known ATP-binding proteins from lysates of HeLa-S3 and Jurkat-T cells were validated with this affinity profiling assay. Additionally, we demonstrated that this novel quantitative ATP-affinity profiling strategy is particularly useful for unveiling previously unrecognized nucleotide-binding sites in ATP-binding proteins. For example, our profiling results revealed K356 as a new ATP-binding site in HSP90. Furthermore, 293 proteins without documented ATP-binding GO were predicted to be ATP-binding proteins on the basis of our quantitative affinity profiling results. We also uncovered, for the first time, the ATP-binding capability of human proliferating cell nuclear antigen (PCNA), identified the lysine residue involved in ATP binding, and validated the protein's capacity in ATP binding with an independent assay. The ICAP approach described in the present paper should be generally applicable for the quantitative assessment of ATP-binding proteins in proteomic samples from cells and tissues.
Collapse
Affiliation(s)
- Yongsheng Xiao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | | | | |
Collapse
|
21
|
López-Alonso JP, de Araujo ED, Kanelis V. NMR and fluorescence studies of drug binding to the first nucleotide binding domain of SUR2A. Biochemistry 2012; 51:9211-22. [PMID: 23078514 DOI: 10.1021/bi301019e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
ATP sensitive potassium (K(ATP)) channels are composed of four copies of a pore-forming inward rectifying potassium channel (Kir6.1 or Kir6.2) and four copies of a sulfonylurea receptor (SUR1, SUR2A, or SUR2B) that surround the pore. SUR proteins are members of the ATP-binding cassette (ABC) superfamily of proteins. Binding of MgATP at the SUR nucleotide binding domains (NBDs) results in NBD dimerization, and hydrolysis of MgATP at the NBDs leads to channel opening. The SUR proteins also mediate interactions with K(ATP) channel openers (KCOs) that activate the channel, with KCO binding and/or activation involving residues in the transmembrane helices and cytoplasmic loops of the SUR proteins. Because the cytoplasmic loops make extensive interactions with the NBDs, we hypothesized that the NBDs may also be involved in KCO binding. Here, we report nuclear magnetic resonance (NMR) spectroscopy studies that demonstrate a specific interaction of the KCO pinacidil with the first nucleotide binding domain (NBD1) from SUR2A, the regulatory SUR protein in cardiac K(ATP) channels. Intrinsic tryptophan fluorescence titrations also demonstrate binding of pinacidil to SUR2A NBD1, and fluorescent nucleotide binding studies show that pinacidil binding increases the affinity of SUR2A NBD1 for ATP. In contrast, the KCO diazoxide does not interact with SUR2A NBD1 under the same conditions. NMR relaxation experiments and size exclusion chromatography indicate that SUR2A NBD1 is monomeric under the conditions used in drug binding studies. These studies identify additional binding sites for commonly used KCOs and provide a foundation for testing binding of drugs to the SUR NBDs.
Collapse
Affiliation(s)
- Jorge P López-Alonso
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|
22
|
Wilke KE, Francis S, Carlson EE. Activity-based probe for histidine kinase signaling. J Am Chem Soc 2012; 134:9150-3. [PMID: 22606938 DOI: 10.1021/ja3041702] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial two-component systems (TCSs) are signaling pathways composed of two proteins: a histidine kinase (HK) and a response regulator (RR). Upon stimulation, the HK autophosphorylates at a conserved histidine. The phosphoryl group is subsequently transferred to an aspartate on an RR, eliciting an adaptive response, often up- or downregulation of gene expression. TCS signaling controls many functions in bacteria, including development, virulence, and antibiotic resistance, making the proteins involved in these systems potential therapeutic targets. Efficient methods for the profiling of HKs are currently lacking. For direct readout of HK activity, we sought to design a probe that enables detection of the phosphotransfer event; however, analysis of the phosphohistidine species is made difficult by the instability of the P-N bond. We anticipated that use of a γ-thiophosphorylated ATP analogue, which would yield a thiophosphorylated histidine intermediate, could overcome this challenge. We determined that the fluorophore-conjugated probe, BODIPY-FL-ATPγS, labels active HK proteins and is competitive for the ATP binding site. This activity-based probe provides a new strategy for analysis of TCSs and other HK-mediated processes and will facilitate both functional studies and inhibitor identification.
Collapse
Affiliation(s)
- Kaelyn E Wilke
- Department of Chemistry, Indiana University, Bloomington, 47405, United States
| | | | | |
Collapse
|