1
|
Bailly C. Etoposide: A rider on the cytokine storm. Cytokine 2023; 168:156234. [PMID: 37269699 DOI: 10.1016/j.cyto.2023.156234] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023]
Abstract
For more than 40 years, the epipodophyllotoxin drug etoposide is prescribed to treat cancer. This semi-synthetic compound remains extensively used to treat advanced small-cell lung cancer and in various chemotherapy regimen for autologous stem cell transplantation, and other anticancer protocols. Etoposide is a potent topoisomerase II poison, causing double-stranded DNA breaks which lead to cell death if they are not repaired. It is also a genotoxic compound, responsible for severe side effects and secondary leukemia occasionally. Beyond its well-recognized function as an inducer of cancer cell death (a "killer on the road"), etoposide is also useful to treat immune-mediated inflammatory diseases associated with a cytokine storm syndrome. The drug is essential to the treatment of hemophagocytic lymphohistiocytosis (HLH) and the macrophage activation syndrome (MAS), in combination with a corticosteroid and other drugs. The use of etoposide to treat HLH, either familial or secondary to a viral or parasitic infection, or treatment-induced HLH and MAS is reviewed here. Etoposide dampens inflammation in HLH patients via an inhibition of the production of pro-inflammatory mediators, such as IL-6, IL-10, IL-18, IFN-γ and TNF-α, and reduction of the secretion of the alarmin HMGB1. The modulation of cytokines production by etoposide contributes to deactivate T cells and to dampen the immune stimulation associated to the cytokine storm. This review discussed the clinical benefits and mechanism of action of etoposide (a "rider on the storm") in the context of immune-mediated inflammatory diseases, notably life-threatening HLH and MAS. The question arises as to whether the two faces of etoposide action can apply to other topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
| |
Collapse
|
2
|
Ma X, Wang T, Yu Z, Shao J, Chu J, Zhu H, Yao R. Formulation and Physicochemical and Biological Characterization of Etoposide-Loaded Submicron Emulsions with Biosurfactant of Sophorolipids. AAPS PharmSciTech 2022; 23:181. [PMID: 35773548 DOI: 10.1208/s12249-022-02329-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Etoposide (ETO), a traditional anticancer chemotherapeutic agent, is commercialized in oral soft gelatin capsules and non-aqueous parenteral solutions form. Novel formulation application and new excipients exploration are needed to improve the water-solubility and comfort of the drug administration. In the present study, novel etoposide-loaded submicron emulsions (ESE) with the biosurfactants of acidic sophorolipid (ASL) and lactonic sophorolipid (LSL) instead of the chemical surfactant of Tween-80 were prepared and characterized. Firstly, parameters of medium-chain triglyceride: long-chain triglyceride (MCT:LCT), lecithin concentration, homogenization pressure and cycle, and type and concentration of surfactants were investigated to optimize the formation of ESEs. Then the physicochemical properties, antitumor activity, stability, and security of ESEs were compared. The results showed that ASL performed the best properties and activities than Tween-80 and LSL in ESE formation. ASL-ESE showed higher drug loading capacity, slower release rate, and significantly increased antitumor activity against ovarian cancer cell line A2780 via apoptosis than Tween-ESE and commercial ETO injection. Besides, both ASL-ESE and Tween-ESE caused no hemolysis, and the safe dose of ASL was 2.14-fold that of Tween-80 in the hemolysis test, making ASL more reliable for drug delivery applications. Furthermore, ASL-ESE exhibited equivalent long-term and autoclaving stability to Tween-ESE. These results thus suggested the excellent competences of ASL in ESE formation, efficacy enhancement, and safety improvement.
Collapse
Affiliation(s)
- Xiaojing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, 02215, USA.
| | - Tong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China
| | - Zequan Yu
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China
| | - Junqian Shao
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China
| | - Jun Chu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, 02215, USA.,Key Laboratory of Xin'An Medicine, Ministry of Education, Centre of Scientific Research Technology, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Huixia Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China
| | - Risheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, China
| |
Collapse
|
3
|
Alshamrani M, Ayon NJ, Alsalhi A, Akinjole O. Self-Assembled Nanomicellar Formulation of Docetaxel as a Potential Breast Cancer Chemotherapeutic System. Life (Basel) 2022; 12:life12040485. [PMID: 35454976 PMCID: PMC9024535 DOI: 10.3390/life12040485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Docetaxel (DTX) is classified as a class IV drug that exhibits poor aqueous solubility (6–7 µg/mL in water) and permeability (P-glycoprotein substrate). The main objective of this study was to construct, characterize, and evaluate docetaxel loaded nanomicellar formulation in vitro for oral delivery to enhance the absorption and bioavailability of DTX, as well as to circumvent P-gp efflux inhibition. Formulations were prepared with two polymeric surfactants, hydrogenated castor oil-40 (HCO-40) and D-α-Tocopherol polyethylene glycol 1000 succinate (VIT E TPGS) with solvent evaporation technique, and the resulting DTX nanomicellar formulations were characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier Transform Infrared Spectroscopy (FT–IR), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). Proton NMR, FT–IR, and XRD data indicated that DTX was completely encapsulated within the hydrophobic core of the nanomicelles in its amorphous state. TEM data revealed a smooth spherical shape of the nanomicellar formulation. The optimized formulation (F-2) possessed a mean diameter of 13.42 nm, a zeta potential of −0.19 mV, with a 99.3% entrapment efficiency. Dilution stability study indicated that nanomicelles were stable up to 100-fold dilution with minimal change in size, poly dispersity index (PDI), and zeta potential. In vitro cytotoxicity study revealed higher anticancer activity of DTX nanomicelles at 5 µM compared to the native drug against breast cancer cell line (MCF-7) cells. The LC–MS data confirmed the chemical stability of DTX within the nanomicelles. In vitro drug release study demonstrated faster dissolution of DTX from the nanomicelles compared to the naked drug. Our experimental results exhibit that nanomicelles could be a drug delivery system of choice to encapsulate drugs with low aqueous solubility and permeability that can preserve the stability of the active constituents to provide anticancer activity.
Collapse
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
- Correspondence:
| | - Navid J. Ayon
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA;
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Omowumi Akinjole
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| |
Collapse
|