1
|
Cellular cofactors of lentiviral integrase: from target validation to drug discovery. Mol Biol Int 2012; 2012:863405. [PMID: 22928108 PMCID: PMC3420096 DOI: 10.1155/2012/863405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/03/2012] [Accepted: 06/27/2012] [Indexed: 01/30/2023] Open
Abstract
To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN), an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs).
Collapse
|
2
|
Buchschacher GL, Wong-Staal F. Approaches to gene therapy for human immunodeficiency virus infection. Hum Gene Ther 2001; 12:1013-9. [PMID: 11399224 DOI: 10.1089/104303401750214249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Much progress has been made in developing new and more efficient treatments for human immunodeficiency virus (HIV) infection, the cause of acquired immunodeficiency syndrome (AIDS). However, the scope of the HIV epidemic and the limitations of existing treatments necessitate the continued development of novel treatment strategies. Gene therapy is one such forward-looking strategy. Gene therapy approaches for HIV infection include efforts to interfere with viral replication directly by engineering HIV-resistant cells or indirectly by eliminating infected cells from the body, primarily by eliciting a therapeutic immune response to destroy HIV-infected cells. Although the prospect of gene therapy as a routine treatment for HIV infection remains distant, continuous progress is being made, which should also have implications for gene therapy strategies for a variety of other diseases. This article reviews some of the strategies for investigating the feasibility of gene transfer for the treatment of HIV infection.
Collapse
Affiliation(s)
- G L Buchschacher
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
3
|
Abstract
Integration of the viral DNA into a host cell chromosome is an essential step for HIV replication and maintenance of persistent infection. Two viral factors are essential for integration: the viral DNA termini (the att sites) and IN. Accruing knowledge of the IN structure, catalytic mechanisms, and interactions with other proteins can be used to design strategies to block integration. A large number of inhibitors have been identified that can be used as leads for the development of potent and selective anti-IN drugs with antiviral activity.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|
4
|
Ragheb JA, Couture L, Mullen C, Ridgway A, Morgan RA. Inhibition of human immunodeficiency virus type 1 by Tat/Rev-regulated expression of cytosine deaminase, interferon alpha2, or diphtheria toxin compared with inhibition by transdominant Rev. Hum Gene Ther 1999; 10:103-12. [PMID: 10022535 DOI: 10.1089/10430349950019237] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A retroviral vector was designed to express toxic proteins only in the presence of the HIV-1 Rev and/or Tat protein(s). The design of this vector incorporates an HIV-specific expression cassette that consists of three elements: the U3R region of the HIV-1 IIIB LTR provides the promoter and Tat-responsive element, a modified intron derived from the human c-src gene facilitates the splicing of inserted genes, and the HIV-1 RRE region enhances the transport of unspliced mRNAs. To further limit potential readthrough transcription, the expression cassette was inserted in the reverse transcriptional orientation relative to the retroviral vector LTR. Three different genes, interferon alpha2, diphtheria toxin (DT-A), and cytosine deaminase, were inserted into this vector. Tat and Rev inducibility was demonstrated directly by a >300-fold induction of interferon production and functionally by a decrease in colony-forming units when a Tat and Rev expression vector was titered on HeLa cells harboring the inducible DT-A cassette. The Tat-inducible cytosine deaminase gene was tested in the Sup-T1 T cell line and shown to inhibit HIV-1 production only when engineered cells were grown in the presence of 5-fluorocytosine. To test the ability of this system to inhibit HIV-1 infection in bulk PBL cultures, a series of transduction and challenge experiments was initiated with both the interferon and DT-A vectors. Protection against infection was documented against three HIV strains in PBLs. Last, the interferon and DT-A vectors were compared with a vector encoding a transdominant Rev protein and were shown to mediate equal or greater inhibition of HIV-1.
Collapse
Affiliation(s)
- J A Ragheb
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
5
|
Lund OS, Losman B, Schønning K, Bolmstedt A, Olofsson S, Hansen JE. Inhibition of HIV type 1 infectivity by coexpression of a wild-type and a defective glycoprotein 120. AIDS Res Hum Retroviruses 1998; 14:1445-50. [PMID: 9824322 DOI: 10.1089/aid.1998.14.1445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An amino acid substitution (D --> K) in the C3 region of HIV-1 gp120 has previously been shown to inhibit binding of virions to CD4+ cells. We have introduced the same mutation into the HIV-1 isolate LAV-I(BRU), in which the mutation is denoted D373K. Here we show that the D373K envelope protein is processed and incorporated into virus particles, but that D373K virions have no detectable infectivity (below 0.1% relative to wild type). When D373K and the wild-type envelope gene were cotransfected in 293 cells at a 4:1 ratio, the resultant infectivity of the HIV-1 supernatant was reduced more than 100-fold. When the same ratio of plasmids was tested in COS-1 cells the inhibition of HIV-1 was an order of magnitude less than observed in 293 cells. COS-1 and 293 cells differed in that only 293 cells displayed saturation of virus production with respect to the envelope protein. Our data fit a simple model: when virion formation is saturated with envelope protein, expression and incorporation of a defective envelope protein imply a corresponding dilution of wild-type protein on the surface of virions. The cooperative function of wild-type envelope proteins is subsequently compromised, and a trans-dominant inhibition of virus infectivity is observed.
Collapse
Affiliation(s)
- O S Lund
- Laboratory for Infectious Diseases, Department 144, Hvidovre Hospital, Denmark
| | | | | | | | | | | |
Collapse
|
6
|
Chen SS, Lee SF, Hao HJ, Chuang CK. Mutations in the leucine zipper-like heptad repeat sequence of human immunodeficiency virus type 1 gp41 dominantly interfere with wild-type virus infectivity. J Virol 1998; 72:4765-74. [PMID: 9573241 PMCID: PMC110011 DOI: 10.1128/jvi.72.6.4765-4774.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been previously shown that a proline substitution for any of the conserved leucine or isoleucine residues located in the leucine zipper-like heptad repeat sequence of human immunodeficiency virus type 1 (HIV-1) gp41 renders viruses noninfectious and envelope (Env) protein unable to mediate membrane fusion (S. S.-L. Chen, C.-N. Lee, W.-R. Lee, K. McIntosh, and T.-M. Lee, J. Virol. 67:3615-3619, 1993; S. S.-L. Chen, J. Virol. 68:2002-2010, 1994). To understand whether these variants could act as trans-dominant inhibitory mutants, the ability of these mutants to inhibit wild-type (wt) virus infectivity was examined. Comparable amounts of cell- and virion-associated gag gene products as well as virion-associated gp41 were found in transfection with wt or mutant HIV-1 provirus. Viruses obtained from coexpression of wt provirus with mutant 566 or 580 provirus inhibited more potently the production of infectious virus than did viruses generated from cotransfection of wt provirus with other mutant proviruses. Nevertheless, all viruses produced from mixed transfection showed decreased infectivity compared with that of the wt virus when a multinuclear-activation beta-galactosidase induction assay was performed. The ability of wt Env to induce cytopathic effects was inhibited by coexpression with mutant Env. Coexpression of mutants inhibited the ability of the wt protein to mediate virus-to-cell transmission, as demonstrated by an env trans-complementation assay with a defective HIV-1 proviral vector. These observations indicated that mutant Env, per se, interferes with wt Env function. Moreover, cotransfection of wt and mutant proviruses produced amounts of cell- and virion-associated gag gene products comparable to those produced by transfection of wt provirus. Similar amounts of gp41 were also found in virions generated from wt-mutant cotransfection as well as from wt transfection alone. These results indicated that the inhibitory effect conferred by mutants on the wt virus infectivity does not involve the late steps of Gag protein assembly and budding, but they suggest that the wt and mutant Env proteins form a dysfunctional hetero-oligomer which is impaired in an early step of the virus replication cycle. Our study demonstrates that mutations in the HIV-1 gp41 leucine zipper-like heptad repeat sequence dominantly inhibit infectious virus production.
Collapse
Affiliation(s)
- S S Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
7
|
Craik CS, Babé LM, Dauber D, McPhee F, Rosé J, Unal A. Engineering catalytically defective forms of HIV protease to modulate its activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 436:31-9. [PMID: 9561196 DOI: 10.1007/978-1-4615-5373-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- C S Craik
- Department of Pharmaceutical Chemistry, University of California at San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Gene therapy is being investigated as an alternative treatment for a wide range of infectious diseases that are not amenable to standard clinical management. Approaches to gene therapy for infectious diseases can be divided into three broad categories: (i) gene therapies based on nucleic acid moieties, including antisense DNA or RNA, RNA decoys, and catalytic RNA moieties (ribozymes); (ii) protein approaches such as transdominant negative proteins and single-chain antibodies; and (iii) immunotherapeutic approaches involving genetic vaccines or pathogen-specific lymphocytes. It is further possible that combinations of the aforementioned approaches will be used simultaneously to inhibit multiple stages of the life cycle of the infectious agent.
Collapse
Affiliation(s)
- B A Bunnell
- Clinical Gene Therapy Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-1851, USA
| | | |
Collapse
|
9
|
McPhee F, Good AC, Kuntz ID, Craik CS. Engineering human immunodeficiency virus 1 protease heterodimers as macromolecular inhibitors of viral maturation. Proc Natl Acad Sci U S A 1996; 93:11477-81. [PMID: 8876160 PMCID: PMC56635 DOI: 10.1073/pnas.93.21.11477] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dimerization of human immunodeficiency virus type 1 protease (HIV-1 PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disruption of the dimer interface inhibits this activity as does formation of heterodimers between wild-type and defective monomers. A structure-based approach was used to identify amino acid substitutions at the dimer interface of HIV-1 PR that facilitate preferential association of heterodimers and inhibit self-association of the defective monomers. Expression of the designed PR monomers inhibits activity of wild-type HIV-1 PR and viral infectivity when assayed in an ex vivo model system. These results show that it is possible to design PR monomers as macromolecular inhibitors that may provide an alternative to small molecule inhibitors for the treatment of HIV infection.
Collapse
Affiliation(s)
- F McPhee
- Department of Pharmaceutical Chemisty, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Tremendous progress has been made in our understanding of the multiplication and pathogenesis of the human immunodeficiency virus, the causative agent of acquired immunodeficiency syndrome (AIDS). To block virus multiplication several targets in the life cycle of the virus have already been identified for which antiviral drugs can be developed and gene therapy can be envisaged as a possible treatment or cure of AIDS. The combination of several therapies might be needed for effective treatment. Prevention of HIV infections through effective vaccines still awaits novel, unconventional strategies.
Collapse
Affiliation(s)
- S Joshi
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
11
|
Kraus GA, Zhang W, Fehr MJ, Petrich JW, Wannemuehler Y, Carpenter S. Research at the Interface between Chemistry and Virology: Development of a Molecular Flashlight. Chem Rev 1996; 96:523-536. [PMID: 11848763 DOI: 10.1021/cr9500139] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George A. Kraus
- Department of Chemistry, and Department of Microbiology, Immunology, and Preventive Medicine, Iowa State University, Ames, Iowa 50011
| | | | | | | | | | | |
Collapse
|
12
|
Blum HE, von Weizsäcker F, Wieland S, Offensperger S, Offensperger WB. Antiviral therapy of hepatitis B virus infection: Blocking viral gene expression. Adv Drug Deliv Rev 1995. [DOI: 10.1016/0169-409x(95)00067-h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Babé LM, Rosé J, Craik CS. Trans-dominant inhibitory human immunodeficiency virus type 1 protease monomers prevent protease activation and virion maturation. Proc Natl Acad Sci U S A 1995; 92:10069-73. [PMID: 7479728 PMCID: PMC40737 DOI: 10.1073/pnas.92.22.10069] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Production of infectious human immunodeficiency virus (HIV) requires proper polyprotein processing by the dimeric viral protease. The trans-dominant inhibitory activity of a defective protease monomer with the active site Asp-25 changed to Asn was measured by transient transfection. A proviral plasmid that included the drug-selectable Escherichia coli gpt gene was used to deliver the wild-type (wt) or mutant proteases to cultured cells. Coexpression of the wt proviral DNA (HIV-gpt) with increasing amounts of the mutant proviral DNA (HIV-gpt D25N) results in a concomitant decrease in proteolytic activity monitored by in vivo viral polyprotein processing. The viral particles resulting from inactivation of the protease were mostly immature, consisting predominantly of unprocessed p55gag and p160gag-pol polyproteins. In the presence of HIV-1 gp160 env, the number of secreted noninfectious particles correlated with the presence of increasing amounts of the defective protease. Greater than 97% reduction in infectivity was observed at a 1:6 ratio of wt to defective protease DNA. This provides an estimate of the level of inhibition required for effectively preventing virion processing. Stable expression of the defective protease in monkey cells reduced the yield of infectious particles from these cells by 90% upon transfection with the wt proviral DNA. These results show that defective subunits of the viral protease exert a trans-dominant inhibitory effect resulting from the formation of catalytically compromised heterodimers in vivo, ultimately yielding noninfectious viral particles.
Collapse
Affiliation(s)
- L M Babé
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
14
|
Buchschacher GL, Freed EO, Panganiban AT. Effects of second-site mutations on dominant interference by a human immunodeficiency virus type 1 envelope glycoprotein mutant. J Virol 1995; 69:1344-8. [PMID: 7815519 PMCID: PMC188718 DOI: 10.1128/jvi.69.2.1344-1348.1995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have demonstrated previously that a human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein containing a Val-to-Glu substitution at the second amino acid of the transmembrane glycoprotein gp41 (termed the 41.2 mutant) dominantly interferes with wild-type envelope-mediated syncytium formation and virus infectivity. To understand the mechanism by which the 41.2 mutant exerts the dominant interfering phenotype and thereby determine further how the mutant might be used as an inhibitor of viral spread, additional mutations were made in the envelope gene, and the effects of these mutations on interference were determined. It was found that processing of the 41.2 mutant glycoprotein in gp120 and gp41 subunits and a functional CD4-binding domain are necessary for the interfering phenotype to be exhibited fully. However, neither a wild-type V3 loop nor the gp41 cytoplasmic tail is necessary for efficient interference. In addition, it was determined that the dominant interfering phenotype is not conferred exclusively by the glutamate substitution at amino acid 2 of gp41, since a substitution with a basic residue at this position also results in a dominant interfering envelope glycoprotein.
Collapse
Affiliation(s)
- G L Buchschacher
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
15
|
Morgan RA, Baler-Bitterlich G, Ragheb JA, Wong-Staal F, Gallo RC, Anderson WF. Further evaluation of soluble CD4 as an anti-HIV type 1 gene therapy: demonstration of protection of primary human peripheral blood lymphocytes from infection by HIV type 1. AIDS Res Hum Retroviruses 1994; 10:1507-15. [PMID: 7888205 DOI: 10.1089/aid.1994.10.1507] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously reported on the construction of retroviral vectors that produce a secreted form of the HIV-1 receptor, T cell antigen CD4 (Morgan et al., AIDS Res Hum Retroviruses 1990;6:183-191). In this article we test the ability of these sCD4-expressing retroviral vectors to protect human T-cell lines or primary T cells from HIV-1 infection. To demonstrate that protection from HIV-1 infection is mediated by the soluble nature of this protein, two coculture protection experiments were conducted. In these experiments, sCD4-expressing retroviral vectors were used to engineer mouse NIH 3T3 cells. In one coculture experiment the human SupT1 cell line was added directly to the culture of sCD4-producing NIH 3T3 cells, and in another experiment the two cell types were separated physically by a semipermeable membrane. In both coculture configurations, the T cell line was protected from HIV-1 challenge as measured by syncytium formation and indirect immunofluorescent assays. In addition, the SupT1 line was directly engineered with sCD4-expressing retroviral vectors and shown to be protected from HIV-1 challenge. As a prelude to further preclinical studies, we tested the ability of retroviral vectors to transduce primary human peripheral blood lymphocytes (PBLs). Conditions used to stimulate T cell growth resulted in significant shifts in the CD4/CD8 cell in favor of CD8 cells. Retroviral-mediated gene transfer under these conditions resulted in low levels of gene transfer (< 5%).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R A Morgan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
16
|
Dropulić B, Jeang KT. Gene therapy for human immunodeficiency virus infection: genetic antiviral strategies and targets for intervention. Hum Gene Ther 1994; 5:927-39. [PMID: 7948142 DOI: 10.1089/hum.1994.5.8-927] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gene therapeutic strategies for the treatment of human immunodeficiency virus type 1 (HIV-1) infection have received increased attention due to lack of chemotherapeutic drugs or vaccines that show long-term efficacy in vivo. An emerging group, referred to here as "genetic antivirals," is reviewed. Genetic antivirals are defined as DNA or RNA elements that are transferred into cells and affect their intracellular targets either directly, or after expression as RNA or proteins. They include antisense oligonucleotides, ribozymes, RNA decoys, transdominant mutants, toxins, and immunogens. They offer the possibility to target simultaneously multiple sites in the HIV genome, thereby minimizing the production of resistant viruses. We review the molecular mechanisms of genetic antivirals, their HIV molecular targets, and discuss issues concerning their application as anti-HIV agents.
Collapse
Affiliation(s)
- B Dropulić
- Molecular Virology Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
17
|
|
18
|
|
19
|
Affiliation(s)
- M L Rohrbaugh
- Division of Extramural Activities, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
20
|
Caruso M, Tsikas G, Roussel M, Alizon M, Klatzmann D. Can diphtheria toxin be used for gene therapy of human immunodeficiency virus infection? AIDS Res Hum Retroviruses 1992; 8:1949-50. [PMID: 1493044 DOI: 10.1089/aid.1992.8.1949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|