1
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Brown AR, Alhallak I, Simmen RCM, Melnyk SB, Heard-Lipsmeyer ME, Montales MTE, Habenicht D, Van TT, Simmen FA. Krüppel-like Factor 9 (KLF9) Suppresses Hepatocellular Carcinoma (HCC)-Promoting Oxidative Stress and Inflammation in Mice Fed High-Fat Diet. Cancers (Basel) 2022; 14:cancers14071737. [PMID: 35406507 PMCID: PMC8996893 DOI: 10.3390/cancers14071737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity, oxidative stress, and inflammation are risk factors for hepatocellular carcinoma (HCC). We examined, in mice, the effects of Krüppel-like factor 9 (KLF9) knockout on: adiposity, hepatic and systemic oxidative stress, and hepatic expression of pro-inflammatory and NOX/DUOX family genes, in a high-fat diet (HFD) context. Male and female Klf9+/+ (wild type, WT) and Klf9-/- (knockout, KO) mice were fed HFD (beginning at age 35 days) for 12 weeks, after which liver and adipose tissues were obtained, and serum adiponectin and leptin levels, liver fat content, and markers of oxidative stress evaluated. Klf9-/- mice of either sex did not exhibit significant alterations in weight gain, adipocyte size, adipokine levels, or liver fat content when compared to WT counterparts. However, Klf9-/- mice of both sexes had increased liver weight/size (hepatomegaly). This was accompanied by increased hepatic oxidative stress as indicated by decreased GSH/GSSG ratio and increased homocysteine, 3-nitrotyrosine, 3-chlorotyrosine, and 4HNE content. Decreased GSH to GSSG ratio and a trend toward increased homocysteine levels were observed in the corresponding Klf9-/- mouse serum. Gene expression analysis showed a heightened pro-inflammatory state in livers from Klf9-/- mice. KLF9 suppresses hepatic oxidative stress and inflammation, thus identifying potential mechanisms for KLF9 suppression of HCC and perhaps cancers of other tissues.
Collapse
Affiliation(s)
- Adam R. Brown
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.R.B.); (I.A.); (R.C.M.S.); (M.E.H.-L.); (M.T.E.M.); (D.H.); (T.T.V.)
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.R.B.); (I.A.); (R.C.M.S.); (M.E.H.-L.); (M.T.E.M.); (D.H.); (T.T.V.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.R.B.); (I.A.); (R.C.M.S.); (M.E.H.-L.); (M.T.E.M.); (D.H.); (T.T.V.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stepan B. Melnyk
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA;
| | - Melissa E. Heard-Lipsmeyer
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.R.B.); (I.A.); (R.C.M.S.); (M.E.H.-L.); (M.T.E.M.); (D.H.); (T.T.V.)
| | - Maria Theresa E. Montales
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.R.B.); (I.A.); (R.C.M.S.); (M.E.H.-L.); (M.T.E.M.); (D.H.); (T.T.V.)
| | - Daniel Habenicht
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.R.B.); (I.A.); (R.C.M.S.); (M.E.H.-L.); (M.T.E.M.); (D.H.); (T.T.V.)
| | - Trang T. Van
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.R.B.); (I.A.); (R.C.M.S.); (M.E.H.-L.); (M.T.E.M.); (D.H.); (T.T.V.)
| | - Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.R.B.); (I.A.); (R.C.M.S.); (M.E.H.-L.); (M.T.E.M.); (D.H.); (T.T.V.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-686-8128
| |
Collapse
|
4
|
Simmen FA, Su Y, Xiao R, Zeng Z, Simmen RCM. The Krüppel-like factor 9 (KLF9) network in HEC-1-A endometrial carcinoma cells suggests the carcinogenic potential of dys-regulated KLF9 expression. Reprod Biol Endocrinol 2008; 6:41. [PMID: 18783612 PMCID: PMC2542371 DOI: 10.1186/1477-7827-6-41] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/10/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Krüppel-like factor 9 (KLF9) is a transcriptional regulator of uterine endometrial cell proliferation, adhesion and differentiation; processes essential for pregnancy success and which are subverted during tumorigenesis. The network of endometrial genes controlled by KLF9 is largely unknown. Over-expression of KLF9 in the human endometrial cancer cell line HEC-1-A alters cell morphology, proliferative indices, and differentiation, when compared to KLF9 under-expressing HEC-1-A cells. This cell line provides a unique model for identifying KLF9 downstream gene targets and signaling pathways. METHODS HEC-1-A sub-lines differing in relative levels of KLF9 were subjected to microarray analysis to identify differentially-regulated RNAs. RESULTS KLF9 under-expression induced twenty four genes. The KLF9-suppressed mRNAs encode protein participants in: aldehyde metabolism (AKR7A2, ALDH1A1); regulation of the actin cytoskeleton and cell motility (e.g., ANK3, ITGB8); cellular detoxification (SULT1A1, ABCC4); cellular signaling (e.g., ACBD3, FZD5, RAB25, CALB1); and transcriptional regulation (PAX2, STAT1). Sixty mRNAs were more abundant in KLF9 over-expressing sub-lines. The KLF9-induced mRNAs encode proteins which participate in: regulation and function of the actin cytoskeleton (COTL1, FSCN1, FXYD5, MYO10); cell adhesion, extracellular matrix and basement membrane formation (e.g., AMIGO2, COL4A1, COL4A2, LAMC2, NID2); transport (CLIC4); cellular signaling (e.g., BCAR3, MAPKAPK3); transcriptional regulation [e.g., KLF4, NR3C1 (glucocorticoid receptor), RXRalpha], growth factor/cytokine actions (SLPI, BDNF); and membrane-associated proteins and receptors (e.g., CXCR4, PTCH1). In addition, the abundance of mRNAs that encode hypothetical proteins (KLF9-inhibited: C12orf29 and C1orf186; KLF9-induced: C10orf38 and C9orf167) were altered by KLF9 expression. Human endometrial tumors of high tumor grade had decreased KLF9 mRNA abundance. CONCLUSION KLF9 influences the expression of uterine epithelial genes through mechanisms likely involving its transcriptional activator and repressor functions and which may underlie altered tumor biology with aberrant KLF9 expression.
Collapse
Affiliation(s)
- Frank A Simmen
- Department of Physiology and Biophysics, and the Arkansas Children's Nutrition Center, 1212 Marshall Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72202, USA
| | - Ying Su
- Department of Physiology and Biophysics, and the Arkansas Children's Nutrition Center, 1212 Marshall Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72202, USA
| | - Rijin Xiao
- Department of Physiology and Biophysics, and the Arkansas Children's Nutrition Center, 1212 Marshall Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72202, USA
| | - Zhaoyang Zeng
- Department of Physiology and Biophysics, and the Arkansas Children's Nutrition Center, 1212 Marshall Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72202, USA
| | - Rosalia CM Simmen
- Department of Physiology and Biophysics, and the Arkansas Children's Nutrition Center, 1212 Marshall Street, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72202, USA
| |
Collapse
|
5
|
Bagamasbad P, Howdeshell KL, Sachs LM, Demeneix BA, Denver RJ. A Role for Basic Transcription Element-binding Protein 1 (BTEB1) in the Autoinduction of Thyroid Hormone Receptor β. J Biol Chem 2008; 283:2275-85. [DOI: 10.1074/jbc.m709306200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Velarde MC, Zeng Z, McQuown JR, Simmen FA, Simmen RCM. Krüppel-Like Factor 9 Is a Negative Regulator of Ligand-Dependent Estrogen Receptor α Signaling in Ishikawa Endometrial Adenocarcinoma Cells. Mol Endocrinol 2007; 21:2988-3001. [PMID: 17717078 DOI: 10.1210/me.2007-0242] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractEstrogen and progesterone, acting through their respective receptors and other nuclear proteins, exhibit opposing activities in target cells. We previously reported that Krüppel-like factor 9 (KLF9) cooperates with progesterone receptor (PR) to facilitate P-dependent gene transcription in uterine epithelial cells. Here we evaluated whether KLF9 may further support PR function by directly opposing estrogen receptor (ER) signaling. Using human Ishikawa endometrial epithelial cells, we showed that 17β-estradiol (E2)-dependent down-regulation of ERα expression was reversed by a small interfering RNA to KLF9. Transcription assays with the E2-sensitive 4× estrogen-responsive element-thymidine kinase-promoter-luciferase reporter gene demonstrated inhibition of ligand-dependent ERα transactivation with ectopic KLF9 expression. E2 induced PR-A/B and PR-B isoform expression in the absence of effects on KLF9 levels. Addition of KLF9 small interfering RNA augmented E2 induction of PR-A/B while abrogating that of PR-B, indicating selective E2-mediated inhibition of PR-A by KLF9. Chromatin immunoprecipitation of the ERα minimal promoter demonstrated KLF9 promotion of E2-dependent ERα association to a region containing functional GC-rich motifs. KLF9 inhibited the recruitment of the ERα coactivator specificity protein 1 (Sp1) to the PR proximal promoter region containing a half-estrogen responsive element and GC-rich sites, but had no effect on Sp1 association to the PR distal promoter region containing GC-rich sequences. In vivo association of KLF9 and Sp1, but not of ERα with KLF9 or Sp1, was observed in control and E2-treated cells. Our data identify KLF9 as a transcriptional repressor of ERα signaling and suggest that it may function at the node of PR and ER genomic pathways to influence cell proliferation.
Collapse
Affiliation(s)
- Michael C Velarde
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | | | | | | | | |
Collapse
|
7
|
Abstract
Sp1 is one of the best characterized transcriptional activators. The biological importance of Sp1 is underscored by the fact that several hundreds of genes are thought to be regulated by this protein. However, during the last 5 years, a more extended family of Sp1-like transcription factors has been identified and characterized by the presence of a conserved DNA-binding domain comprising three Krüppel-like zinc fingers. Each distinct family member differs in its ability to regulate transcription, and, as a consequence, to influence cellular processes. Specific activation and repression domains located within the N-terminal regions of these proteins are responsible for these differences by facilitating interactions with various co-activators and co-repressors. The present review primarily focuses on discussing the structural, biochemical and biological functions of the repressor members of this family of transcription factors. The existence of these transcriptional repressors provides a tightly regulated mechanism for silencing a large number of genes that are already known to be activated by Sp1.
Collapse
Affiliation(s)
- Gwen Lomberk
- *Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, U.S.A
| | - Raul Urrutia
- *Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, U.S.A
- †Tumor Biology Program, Mayo Clinic, Rochester, MN 55901, U.S.A
- ‡Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
8
|
Pereira LA, Bentley K, Peeters A, Churchill MJ, Deacon NJ. A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res 2000; 28:663-8. [PMID: 10637316 PMCID: PMC102541 DOI: 10.1093/nar/28.3.663] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) represents a model promoter system and the identification and characterisation of cellular proteins that interact with this region has provided a basic understanding about both general eukaryotic and HIV-1 proviral transcriptional regulation. To date a large number of sequence-specific DNA-protein interactions have been described for the HIV-1 LTR. The aim of this report is to provide a comprehensive, updated listing of these HIV-1 LTR interactions. It is intended as a reference point to facilitate on-going studies characterising the identity of cellular proteins interacting with the HIV-1 LTR and the functional role(s) of specific regions of the LTR for HIV-1 replication.
Collapse
Affiliation(s)
- L A Pereira
- AIDS Molecular Biology Unit, National Centre for HIV Virology Research, The Macfarlane Burnet Centre for Medical Research, PO Box 254, Fairfield, Victoria 3078, Australia
| | | | | | | | | |
Collapse
|
9
|
Abstract
Sp1 is one of the very first cellular transcription factors to be identified and cloned in virtue of its binding to a G-rich motif in the SV40 early promoter. Sp1 protein binds to the G-rich sequences present in a variety of cellular and viral promoters and stimulates their transcriptional activity. Recently, a number of other GC and/or GT box-binding factors homologous to Sp1 have been isolated, namely Sp2, Sp3 and Sp4, and the two more distantly related factors, BTEB and BTEB2. The discovery of this family highlights a previously unknown level of complexity of transcriptional regulation of promoters containing GC and/or GT box motifs. This review focuses primarily on strategies aimed to elucidate the transcription properties of the Sp1-like factors and discusses the experimental problems inherent in the attempt to define their respective functions.
Collapse
Affiliation(s)
- L Lania
- Department of Genetics, Molecular and General Biology, University of Naples, Federico II, Italy
| | | | | |
Collapse
|
10
|
Sjøttem E, Anderssen S, Johansen T. The promoter activity of long terminal repeats of the HERV-H family of human retrovirus-like elements is critically dependent on Sp1 family proteins interacting with a GC/GT box located immediately 3' to the TATA box. J Virol 1996; 70:188-98. [PMID: 8523525 PMCID: PMC189804 DOI: 10.1128/jvi.70.1.188-198.1996] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The HERV-H family of endogenous retrovirus-like elements is widely distributed in the human genome, with about 1,000 full-length elements and a similar number of solitary long terminal repeats (LTRs). HERV-H LTRs have been shown to direct the transcription of both HERV-H-encoded and adjacent cellular genes. Transcripts of HERV-H elements are especially abundant in placenta, teratocarcinoma cell lines, and cell lines derived from testicular and lung tumors. Here we report that only a subset of HERV-H LTRs display promoter activity in human cell lines and that these LTRs are characterized by the presence of a GC/GT box immediately downstream of the TATA box. This GC/GT box is required for promoter activity, while, surprisingly, the TATA box is dispensable. The ubiquitously expressed transcription factors Sp1 and Sp3 bound to this GC/GT box and stimulated transcription from the promoter-active LTRs in the teratocarcinoma cell line NTera2-D1. However, in HeLa and Drosophila SL-2 cells, Sp1 acted as a transcriptional activator of the LTRs, while Sp3 acted as a repressor of Sp1-mediated transcriptional activation. Cotransfection studies also revealed that the tissue-specific Sp1-related protein BTEB bound to this GC/GT box and stimulated transcription from the LTR promoters in NTera2-D1 cells. These results show that members of the Sp1 protein family are crucial determinants for transcriptional activation of HERV-H LTR promoters and suggest that these proteins may also be involved in determining the tissue-specific expression pattern of HERV-H elements.
Collapse
Affiliation(s)
- E Sjøttem
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, Norway
| | | | | |
Collapse
|
11
|
Imataka H, Nakayama K, Yasumoto K, Mizuno A, Fujii-Kuriyama Y, Hayami M. Cell-specific translational control of transcription factor BTEB expression. The role of an upstream AUG in the 5'-untranslated region. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32045-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|