1
|
Conde J, Oliva N, Atilano M, Song HS, Artzi N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. NATURE MATERIALS 2016; 15:353-63. [PMID: 26641016 PMCID: PMC6594154 DOI: 10.1038/nmat4497] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/26/2015] [Indexed: 05/04/2023]
Abstract
The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs-a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)-provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo, and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer.
Collapse
Affiliation(s)
- João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Correspondence and requests for materials should be addressed to J.C. or N.A. ;
| | - Nuria Oliva
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
| | - Mariana Atilano
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Grup d’Enginyeria de Materials, Institut Quimic de Sarria-Universitat Ramon Llull, Barcelona 08017, Spain
| | - Hyun Seok Song
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Yuseong, Daejeon 169-148, Republic of Korea
| | - Natalie Artzi
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Medicine, Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Correspondence and requests for materials should be addressed to J.C. or N.A. ;
| |
Collapse
|
2
|
Moelling K, Broecker F, Kerrigan JE. RNase H: specificity, mechanisms of action, and antiviral target. Methods Mol Biol 2014; 1087:71-84. [PMID: 24158815 DOI: 10.1007/978-1-62703-670-2_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Ribonuclease (RNase) H is one of the four enzymes encoded by all retroviruses, including HIV. Its main activity is the hydrolysis of the RNA moiety in RNA-DNA hybrids. The RNase H ribonuclease is essential in the retroviral life cycle, since it generates and removes primers needed by the Reverse Transcriptase (RT) for initiation of DNA synthesis. Retroviruses lacking RNase H activity are noninfectious. Despite its importance, RNase H is the only enzyme of HIV not yet targeted by antiretroviral therapy. Here, we describe functions and mechanisms of RNase H during the HIV life cycle and describe a cleavage assay, which is suitable to determine RNase H activity in samples of various kinds. In this assay, an artificial, fluorescence-labeled RNA-DNA hybrid is cleaved in vitro by an RT/RNase H enzyme. Cleavage products are analyzed by denaturing polyacrylamide gel electrophoresis (PAGE). This assay may be used to detect the RNase H, assess the effect of inhibitors, or even activators, of the RNase H, as we have described, as candidates for novel antiretroviral agents.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
3
|
Abstract
Ribonucleases H or RNases H are conserved and exist in almost every organism. They generate and remove RNA primers, which are required for DNA replication. RNases H hydrolyze RNA in RNA-DNA hybrids. RNases H and related enzymes contribute to reduction of gene expression in antisense and small-interfering RNA mechanisms for gene silencing. Retroviruses code for RNases H, which are required for DNA provirus synthesis. Their RNase H is fused to the reverse transcriptase and essential for virus replication inside the cell. Retroviruses code for four enzymes, three of which have been targeted by antiretroviral therapies. A drug against the fourth one, the retroviral RNase H, does not yet exist. The viral but not cellular RNases H should be targeted by drug design. Some details will be discussed here. Furthermore, a compound is described, which enables the RNase H to kill cell-free HIV particles by driving the virus into suicide - with potential use as a microbicide.
Collapse
|
4
|
Heinrich J, Schols D, Moelling K. A short hairpin loop-structured oligodeoxynucleotide targeting the virion-associated RNase H of HIV inhibits HIV production in cell culture and in huPBL-SCID mice. Intervirology 2011; 55:242-6. [PMID: 21576910 DOI: 10.1159/000324544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/17/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We have recently demonstrated that an oligodeoxynucleotide (ODN) can enter HIV particles and form a local hybrid at the highly conserved polypurine tract (PPT), the target site of the ODN. This hybrid is recognized by the retrovirus-specific RNase H, which is a virion-associated enzyme. It cleaves the RNA at local hybrids and thereby destroys viral infectivity. This mechanism has been described previously in a mouse model using an oncogenic retrovirus and was commented as driving HIV into suicide. The RNase H is one of four retrovirus-specific enzymes and not yet targeted by antiviral drugs. AIMS We wanted to analyze the tendency of ODNs to induce mutations in cell culture and its efficacy to inhibit HIV in humanized SCID mice. METHOD We used cultures of CD4+ T cells infected with HIV-1 after serial passage in the presence of ODNs in the supernatant for up to 3 months, using Foscarnet as positive control, and treated HIV-infected huPBL-SCID mice repeatedly with ODN. RESULTS Treatment with ODN did not induce mutations of the PPT or the reverse transcriptase polymerase domain in vitro, whereas Foscarnet did. We furthermore demonstrate that ODNs inhibit HIV-1 replication in humanized HIV-infected SCID mice.
Collapse
|
5
|
Hofmann MH, Heinrich J, Radziwill G, Radziwil G, Moelling K. A short hairpin DNA analogous to miR-125b inhibits C-Raf expression, proliferation, and survival of breast cancer cells. Mol Cancer Res 2009; 7:1635-44. [PMID: 19825990 DOI: 10.1158/1541-7786.mcr-09-0043] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The noncoding RNA miR-125b has been described to reduce ErbB2 protein expression as well as proliferation and migration of cancer cell lines. As additional target of miR-125b, we identified the c-raf-1 mRNA by sequence analysis. We designed a short hairpin-looped oligodeoxynucleotide (ODN) targeted to the same 3' untranslated region of c-raf-1 mRNA as miR-125b. The fully complementary ODN antisense strand is linked to a second strand constituting a partially double-stranded structure of the ODN. Transfection of the c-raf-1-specific ODN (ODN-Raf) in a breast cancer cell line reduced the protein levels of C-Raf, ErbB2, and their downstream effector cyclin D1 similar to miR-125b. MiR-125b as well as ODN-Raf showed no effect on the c-raf-1 mRNA level in contrast to small interfering RNA. Unlike miR-125b, ODN-Raf induced a cytopathic effect. This may be explained by the structural properties of ODN-Raf, which can form G-tetrads. Thus, the short hairpin-looped ODN-Raf, targeting the same region of c-raf-1 as miR-125b, is a multifunctional molecule reducing the expression of oncoproteins and stimulating cell death. Both features may be useful to interfere with tumor growth.
Collapse
|
6
|
Moelling K, Heinrich J, Matskevich A, Wittmer-Elzaouk L, Kwok T. Silencing of viral RNAs by small double-stranded siDNA. Retrovirology 2009. [PMCID: PMC2767043 DOI: 10.1186/1742-4690-6-s2-p58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Noreen F, Heinrich J, Moelling K. Antitumor activity of small double-stranded oligodeoxynucleotides targeting telomerase RNA in malignant melanoma cells. Oligonucleotides 2009; 19:169-78. [PMID: 19441892 DOI: 10.1089/oli.2008.0170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human telomerase RNA (hTR) is an intrinsic component of telomerase enzyme. Small interfering RNAs (siRNAs) and single-stranded antisense oligonucleotides have been used previously for silencing of the hTR. The objective of this study was to investigate the effect of partially double-stranded oligodeoxynucleotides (ODNs), in vitro and in vivo in comparison to single-stranded antisense ODNs and siRNAs. ODNs were designed on the basis of structural properties of an ODN from previous studies on HIV, to target the hTR in the human cervical carcinoma HeLa cell line and mouse telomerase RNA (mTR) in the murine metastatic melanoma B16-F10 cell line, respectively. Our results indicate that ODNs were able to inhibit the hTR by 68% and the mTR by 81% in the respective cell lines. This correlated with ODN-mediated rapid inhibition of cell proliferation and induction of apoptosis excluding slow effects on telomerase function. The inhibition of the hTR was decreased by knock-down of the cellular RNases H suggesting their contribution. Furthermore, we showed a reduction in numbers of metastases by 70% after intravenous administration of ODN-transfected B16-F10 cells in C57BL/6 mice. Our study demonstrates the potential utility of these hairpin-loop-structured ODNs as a different group of nucleic acids for telomerase-based antiproliferative strategies.
Collapse
Affiliation(s)
- Faiza Noreen
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
8
|
Kwok T, Heinrich J, Jung-Shiu J, Meier MG, Mathur S, Moelling K. Reduction of gene expression by a hairpin-loop structured oligodeoxynucleotide: alternative to siRNA and antisense. Biochim Biophys Acta Gen Subj 2009; 1790:1170-8. [PMID: 19505533 DOI: 10.1016/j.bbagen.2009.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/29/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND We previously described the inhibition of HIV-1 replication by a 54-mer hairpin-loop structured oligodeoxynucleotide (ODN) A, which binds the polypurine tract (PPT) on HIV-1 RNA. ODN A was shown to lead to reduced viral RNA in virions or early during infection. METHODS AND RESULTS Here we demonstrated that ODN A was able to cause hydrolysis of viral RNA not only by retroviral RT-associated RNase H but also cellular RNase H1 and RNase H2 in vitro. Furthermore, ODN A reduced gene expression in a dose-dependent manner in a cell-based reporter assay where a PPT sequence was inserted in the 5' untranslated region of the reporter gene. The efficacy of ODN A was higher than that of its siRNA and antisense counterparts. By knocking down cellular RNases H, we showed that RNase H1 contributed to the gene silencing by ODN A but the possibility of a partial contribution of RNase H-independent mechanisms could not be ruled out. GENERAL SIGNIFICANCE Our findings highlight the potential application of hairpin-loop structured ODNs for reduction of gene expression in mammalian cells and underscore the possibility of using ODN A to trigger the hydrolysis of HIV RNA in infected cells by cellular RNases H.
Collapse
Affiliation(s)
- Terry Kwok
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, CH 8006 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Falkenhagen A, Heinrich J, Moelling K. Short hairpin-loop-structured oligodeoxynucleotides reduce HSV-1 replication. Virol J 2009; 6:43. [PMID: 19397793 PMCID: PMC2681447 DOI: 10.1186/1743-422x-6-43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/27/2009] [Indexed: 11/23/2022] Open
Abstract
The Herpes simplex virus (HSV) is known as an infectious agent and widespread in the human population. The symptoms of HSV infections can range from mild to life threatening, especially in immune-compromised individuals. HSV infections are commonly treated with the guanosine analogue Aciclovir, but reports of resistance are increasing. Efforts are made to establish single-stranded antisense oligodeoxynucleotides (as) and small interfering ribonucleic acids (siRNAs) for antiviral treatment. Recently, another class of short interfering nucleic acids, partially double-stranded hairpin loop-structured 54 mer oligodeoxynucleotides (ODNs), was shown to allow hydrolysis of HIV RNA by binding to the viral RNA. This leads to a substrate for the viral RNase H. To assess the potential of such ODNs for inhibition of HSV-1 replication, five partially double-stranded ODNs were designed based on the sequences of known siRNAs against HSV-1 with antiviral activity. Three of them are directed against early and two against leaky late genes. Primary human lung fibroblasts, MRC-5, and African green monkey kidney cells, Vero, were transfected with ODNs and subsequently infected. The effect on HSV-1 replication was determined by analyzing the virus titer in cell culture supernatants by quantitative PCR and plaque assays. An inhibitory effect was observed with all five selected ODNs, with two cases showing statistical significance in both cell types. The observed effect was sequence-specific and dose dependent. In one case the ODN was more efficient than a previously described siRNA directed against the same target site in the mRNA of UL5, a component of the helicase/primase complex. HSV-1 virions and ODNs can be applied simultaneously without transfection reagent, but at a 50-fold higher concentration to Vero cells with similar efficiencies. The results underline the potential of partially double-stranded hairpin loop-structured ODNs as antiviral agents.
Collapse
|
10
|
Wittmer-Elzaouk L, Jung-Shiu J, Heinrich J, Moelling K. Retroviral self-inactivation in the mouse vagina induced by short DNA. Antiviral Res 2009; 82:22-8. [PMID: 19189851 DOI: 10.1016/j.antiviral.2009.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/22/2008] [Accepted: 01/13/2009] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus (HIV) has been shown to undergo self-destruction upon treatment of cell-free virions with partially double-stranded oligodeoxynucleotides targeting the polypurine tract (PPT) of the viral RNA in the virus particle. The ODN forms a local hybrid with the PPT activating the viral RNase H to prematurely cleave the genomic RNA. Here we are describing the self-destruction of a recombinant lentivirus harboring the PPT of HIV in a mouse vagina model. We showed a decrease in viral RNA levels in cell-free virus particles and a reduction reverse transcribed complementary DNA (cDNA) in virus-infected human and primary murine cells by incubation with ODNs. In the vagina simultaneous, prophylactic or therapeutic ODN treatments led to a significant reduction in viral RNA levels. Our finding may have some relevance for the design of other viral self-destruction approaches. It may lead to a microbicide for reduction of sexual and mother-to-child transmission.
Collapse
Affiliation(s)
- Lina Wittmer-Elzaouk
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30/32, CH-8006 Zurich, Switzerland
| | | | | | | |
Collapse
|
11
|
Oligonucleotide-mediated retroviral RNase H activation leads to reduced HIV-1 titer in patient-derived plasma. AIDS 2009; 23:213-21. [PMID: 19098491 DOI: 10.1097/qad.0b013e32831c5480] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The retroviral RNase H is essential for viral replication. This component has not yet been extensively studied for antiviral therapy. It can be activated by an oligodeoxynucleotide (ODN) resulting in self-destruction of the virions. OBJECTIVE To examine antiviral potential of ODN in clinical samples using plasma of HIV-1-infected patients. DESIGN Plasma of 19 HIV-1-infected patients from Zurich and 10 HIV-1 isolates from Africa and drug-resistant strains were processed for ex-vivo treatment. METHODS Cell-free virions were treated with ODN in the plasma and HIV RNA was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, infectivity of the treated virions was tested on primary human peripheral blood mononuclear cells. RESULTS Cell-free virions in plasma contained significantly less intact HIV RNA upon treatment with ODN (P = 0.0004), and their infectivity was decreased 52-fold (P = 0.0004). In 39% of the Zurich samples, infectivity was reduced more than 10-fold, in 33% more than 100-fold, and in 28% more than 1000-fold. Also, the isolates from Africa exhibited a 63-fold reduction in infectivity (P = 0.0069) with 80% of the isolates responding more than 10-fold, 40% more than 100-fold, and 10% more than 1000-fold. CONCLUSION Significant reduction of plasma HIV RNA levels and infectivity of treated virions was achieved on the basis of induced self-destruction of HIV observed with clinical samples. Reduction of viral load ex vivo was designed as model for potential effects in vivo. Premature activation rather than inhibition of a viral enzyme could be a model strategy for future antiretroviral control.
Collapse
|
12
|
Kwok T, Helfer H, Alam MI, Heinrich J, Pavlovic J, Moelling K. Inhibition of influenza A virus replication by short double-stranded oligodeoxynucleotides. Arch Virol 2008; 154:109-14. [PMID: 19034603 DOI: 10.1007/s00705-008-0262-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/28/2008] [Indexed: 12/24/2022]
Abstract
Influenza A virus causes prevalent respiratory tract infections in humans. Small interfering RNA (siRNA) and antisense oligonucleotides (asODNs) have been used previously for silencing the RNA genome of influenza virus. Here, we explored the use of partially double-stranded oligodeoxynucleotides (dsODNs) to suppress the production of influenza A virus in cell cultures and animal models. We were able to inhibit influenza A virus replication in cultured human lung cells as well as in the lungs of infected C57BL/6 mice by treatment with dsODN 3-h post-infection. In about 20% of the cases (15/77) the titer was reduced by 10- to 100-fold and in 10% up to 1,000-fold. The antiviral effects of dsODNs were dose-dependent, sequence-dependent and comparable to those of its antisense and siRNA analogues. Thus, dsODNs may be developed as an additional class of nucleic acids for the inhibition of influenza virus replication.
Collapse
Affiliation(s)
- Terry Kwok
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Moelling K, Matskevich A, Jung JS. Relationship between retroviral replication and RNA interference machineries. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:365-8. [PMID: 17381318 DOI: 10.1101/sqb.2006.71.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small interfering RNAs (siRNAs) associated with gene silencing are cellular defense mechanisms against invading viruses. The viruses fight back by suppressors or escape mechanisms. The retroviruses developed a unique escape mechanism by disguising as DNA proviruses. An evolutionary relationship between the siRNA machinery and the replication machinery of retroviruses is likely. The RNA cleavage enzymes PIWI and RNase H proteins are structurally related. This relationship can be extended from structure to function, since the retroviral reverse transcriptase (RT)/RNase H can also cause silencing of viral RNA by siRNA. Thus, both enzymes can cleave RNA-DNA hybrids and double-stranded RNA (dsRNA) with various efficiencies shown previously and here, demonstrating that their specificities are not absolute. Other similarities may exist, for example between PAZ and the RT and between RNA-binding proteins and the viral nucleocapsid protein. Dicer has some similarities with the viral integrase, since both specifically generate dinucleotide 3'-overhanging ends. We described previously the destruction of the human immunodeficiency virus (HIV) RNA by a DNA oligonucleotide ODN (oligodeoxynucleotide). Variants of the ODN indicated high length and sequence specificities, which is reminiscent of siRNA and designated here as "siDNA." Cleavage of the viral RNA in the presence of the ODN is caused by the retroviral RT/RNase H and cellular RNase H activities. Several siRNA-mediated antiviral defense mechanisms resemble the interferon system.
Collapse
Affiliation(s)
- K Moelling
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
14
|
Matzen K, Elzaouk L, Matskevich AA, Nitzsche A, Heinrich J, Moelling K. RNase H-mediated retrovirus destruction in vivo triggered by oligodeoxynucleotides. Nat Biotechnol 2007; 25:669-74. [PMID: 17546028 DOI: 10.1038/nbt1311] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 05/04/2007] [Indexed: 12/12/2022]
Abstract
The HIV-1 RNase H can be prematurely activated by oligodeoxynucleotides targeting the highly conserved polypurine tract required for second strand DNA synthesis. This inhibits retroviral replication in cell-free HIV particles and newly infected cells. Here we extend these studies to an in vivo model of retroviral replication. Mice that are chronically infected with the spleen focus-forming virus and treated with oligodeoxynucleotides that target the polypurine tract, exhibit either transient or long-term reductions in plasma virus titer, depending on the therapeutic regimen. Treatment prior to, during or shortly after infection can delay disease progression, increase survival rates and prevent viral infection. This strategy destroys viral RNA template in virus particles in serum as well as early retroviral replication intermediates in infected cells. As it targets events common to the replication cycle of all retroviruses, this approach may be broadly applicable to retroviruses of medical and agricultural importance.
Collapse
Affiliation(s)
- Kathrin Matzen
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, 8006 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Moelling K, Matskevich A, Elzaouk L, Heinrich J, Jung JS, Kwok T, Mathur S. Self-inactivation of HIV by its own RT/RNase H. Retrovirology 2006. [PMCID: PMC1716968 DOI: 10.1186/1742-4690-3-s1-s57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
Matskevich AA, Ziogas A, Heinrich J, Quast SA, Moelling K. Short partially double-stranded oligodeoxynucleotide induces reverse transcriptase/RNase H-mediated cleavage of HIV RNA and contributes to abrogation of infectivity of virions. AIDS Res Hum Retroviruses 2006; 22:1220-30. [PMID: 17209763 DOI: 10.1089/aid.2006.22.1220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a novel mechanism of viral RNA eradication by an oligodeoxynucleotide A (ODN A) directly in HIV virions. The ODN A consists of an antisense and a passenger strand, and was designed to target the polyp-urine tract (PPT) of HIV-1, a conserved region of the viral genome. It leads to HIV reverse transcriptase/ribonuclease H (RT/RNase H)-dependent degradation of the RNA in viral particles. Illimaquinone, a specific inhibitor of RNase H, activity of HIV RT/RNase H, prevents RNA cleavage. The effect of the ODN A is sequence-specific and the passenger strand is important, since a lack or alteration of this strand reduces the antiviral activity of the ODN. ODN A has a stronger antiviral effect compared to a control ODN CO, targeted to a site outside of the PPT. The pretreatment with ODN A strongly reduced the infectivity of virions in cell culture in the absence of any DNA carriers or detergents.
Collapse
Affiliation(s)
- Alexey A Matskevich
- Institute of Medical Virology, University of Zurich, CH-8006 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Moelling K, Abels S, Jendis J, Matskevich A, Heinrich J. Silencing of HIV by hairpin-loop-structured DNA oligonucleotide. FEBS Lett 2006; 580:3545-50. [PMID: 16737697 DOI: 10.1016/j.febslet.2006.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/13/2006] [Accepted: 05/11/2006] [Indexed: 11/19/2022]
Abstract
We describe inhibition of HIV replication by a partially double-stranded 54mer oligodeoxynucleotide, ODN, which consists of an antisense strand targeting the highly conserved polypurine tract, PPT, of HIV, and a second strand, compatible with triple-helix formation. Upon treatment of HIV-infected cells with ODN early after infection no viral nucleic acids, syncytia or p24 viral antigen expression was observed. The ODN-mediated effect was highly sequence-specific. The ODN against HIV-IIIB was effective preferentially against its homologous PPT and less against the PPT of HIV-BaL differing in two of 24 nucleotides and vice versa. It may be interesting mechanistically as an antiviral drug.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Virology, University of Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Jason TLH, Koropatnick J, Berg RW. Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 2004; 201:66-83. [PMID: 15519609 DOI: 10.1016/j.taap.2004.04.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 04/28/2004] [Indexed: 12/24/2022]
Abstract
Targeting unique mRNA molecules using antisense approaches, based on sequence specificity of double-stranded nucleic acid interactions should, in theory, allow for design of drugs with high specificity for intended targets. Antisense-induced degradation or inhibition of translation of a target mRNA is potentially capable of inhibiting the expression of any target protein. In fact, a large number of proteins of widely varied character have been successfully downregulated using an assortment of antisense-based approaches. The most prevalent approach has been to use antisense oligonucleotides (ASOs), which have progressed through the preclinical development stages including pharmacokinetics and toxicological studies. A small number of ASOs are currently in human clinical trials. These trials have highlighted several toxicities that are attributable to the chemical structure of the ASOs, and not to the particular ASO or target mRNA sequence. These include mild thrombocytopenia and hyperglycemia, activation of the complement and coagulation cascades, and hypotension. Dose-limiting toxicities have been related to hepatocellular degeneration leading to decreased levels of albumin and cholesterol. Despite these toxicities, which are generally mild and readily treatable with available standard medications, the clinical trials have clearly shown that ASOs can be safely administered to patients. Alternative chemistries of ASOs are also being pursued by many investigators to improve specificity and antisense efficacy and to reduce toxicity. In the design of ASOs for anticancer therapeutics in particular, the goal is often to enhance the cytotoxicity of traditional drugs toward cancer cells or to reduce the toxicity to normal cells to improve the therapeutic index of existing clinically relevant cancer chemotherapy drugs. We predict that use of antisense ASOs in combination with small molecule therapeutics against the target protein encoded by the antisense-targeted mRNA, or an alternate target in the same or a connected biological pathway, will likely be the most beneficial application of this emerging class of therapeutic agent.
Collapse
Affiliation(s)
- Tracey L H Jason
- Cancer Research Laboratories, London Regional Cancer Centre, London, Ontario, Canada N6A 4L6
| | | | | |
Collapse
|
20
|
Giddings MC, Shah AA, Freier S, Atkins JF, Gesteland RF, Matveeva OV. Artificial neural network prediction of antisense oligodeoxynucleotide activity. Nucleic Acids Res 2002; 30:4295-304. [PMID: 12364609 PMCID: PMC140555 DOI: 10.1093/nar/gkf557] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An mRNA transcript contains many potential antisense oligodeoxynucleotide target sites. Identification of the most efficacious targets remains an important and challenging problem. Building on separate work that revealed a strong correlation between the inclusion of short sequence motifs and the activity level of an oligo, we have developed a predictive artificial neural network system for mapping tetranucleotide motif content to antisense oligo activity. Trained for high-specificity prediction, the system has been cross-validated against a database of 348 oligos from the literature and a larger proprietary database of 908 oligos. In cross- validation tests the system identified effective oligos (i.e. oligos capable of reducing target mRNA expression to <25% that of the control) with 53% accuracy, in contrast to the <10% success rates commonly reported for trial-and-error oligo selection, suggesting a possible 5-fold reduction in the in vivo screening required to find an active oligo. We have implemented a web interface to a trained neural network. Given an RNA transcript as input, the system identifies the most likely oligo targets and provides estimates of the probabilities that oligos targeted against these sites will be effective.
Collapse
Affiliation(s)
- Michael C Giddings
- Department of Human Genetics, University of Utah, SLC, UT 84112, USA and. Isis Pharmaceuticals, Carlsbad, CA 92008, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Wei X, Götte M, Wainberg MA. Human immunodeficiency virus type-1 reverse transcription can be inhibited in vitro by oligonucleotides that target both natural and synthetic tRNA primers. Nucleic Acids Res 2000; 28:3065-74. [PMID: 10931921 PMCID: PMC108450 DOI: 10.1093/nar/28.16.3065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reverse transcription of human immunodeficiency virus type-1 is primed by cellular tRNA(Lys3), which is selectively packaged into viral particles where it is bound at its 3' terminus to a complementary sequence of viral RNA termed the primer binding site (PBS). Since cellular tRNA(Lys3) is highly conserved, it might conceivably serve as a good target for novel antagonists to block reverse transcriptase (RT) activity. In this study, we have examined a number of antisense oligodeoxyribonucleotides (ODNs) that are complementary to different parts of the tRNA primer and, therefore, may interfere with the initiation of RT-mediated DNA synthesis. We found that the stability of complexes between synthetic tRNA(Lys3 )and ODNs was significantly increased when binding occurred via sequences involved in tertiary interactions of the tRNA. In particular, ODNs with complementarity to both the variable and TPsiC stem-loop of tRNA(Lys3 )bound with high affinity to both free tRNA(Lys3 )as well as to the binary tRNA(Lys3)/RNA complex. As a result, the initiation of DNA synthesis was severely compromised under these conditions. Moreover, RT-associated RNase H activity recognized the tRNA within this ternary tRNA(Lys3)/RNA/ODN complex as an RNA template and initiated its degradation. Both this RNase H degradation of tRNA(Lys3 )as well as the altered structure of the tRNA/RNA complex, due to the binding of the ODN, contributed to the inhibition of synthesis of viral DNA. The initiation of RT activity was almost completely blocked when using ODNs that interfered with intermolecular tRNA/RNA interactions that involved both the PBS and sequences outside the PBS. Similar findings were obtained with natural preparation of tRNA(Lys3).
Collapse
Affiliation(s)
- X Wei
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, 3755, chemin Côte-Ste-Catherine, Montréal, Québec H3T 1E2, Canada
| | | | | |
Collapse
|
22
|
|