1
|
Mboumba Bouassa RS, Pere H, Mossoro-Kpinde CD, Roques P, Gody JC, Moussa S, Veyer D, Gresenguet G, Charpentier C, Jenabian MA, Djoba Siawaya JF, Belec L. Purifying Selection in Human Immunodeficiency Virus-1 pol Gene in Perinatally Human Immunodeficiency Virus-1-Infected Children Harboring Discordant Immunological Response and Virological Nonresponse to Long-Term Antiretroviral Therapy. J Clin Med Res 2020; 12:369-376. [PMID: 32587653 PMCID: PMC7295550 DOI: 10.14740/jocmr4157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 11/11/2022] Open
Abstract
Background Biological monitoring of antiretroviral treatment (ART) in human immunodeficiency virus (HIV)-infected pediatric population remains challenging. The aim of the present study was to assess the long-term HIV-1 genetic diversity in pol gene in HIV-1-infected children in virological failure under antiretroviral regimen adapted according to the successive World Health Organization (WHO) guidelines for resource-constrained settings. Methods HIV-1 diversity in pol gene was assessed in HIV-1-infected children and adolescents born from HIV-infected mothers (median age at follow-up: 13.8 years) in virological failure (VF+) despite long-term regimen recommended by the WHO. The numbers of nonsynonymous substitutions per potential nonsynonymous site (dN) and of synonymous substitutions at potential synonymous sites (dS) in HIV-1 pol gene and the dN/dS ratios were used to estimate the selective pressure on circulating HIV-1. Results The immunological responses to ART basically corresponded to: 1) Full therapeutic failure with immunological (I-) and virological nonresponses in one-quarter (24.6%) of study children ((I-, VF+) subgroup); 2) Discordant immunovirological responses with paradoxical high CD4 T cell counts (I+) and high HIV-1 RNA load in the remaining cohort patients (75.4%) ((I+, VF+) subgroup). The mean dS was 1.8-fold higher in (I+, VF+) than (I-, VF+) subgroup (25.9 ± 18.4 vs. 14.3 ± 10.8). In the (I+, VF+) subgroup, the mean dS was 1.6-fold higher than the mean dN. Finally, the mean dN/dS ratio was 2.1-fold lower in (I+, VF+) than (I-, VF+) subgroup (0.6 ± 0.3 vs. 1.3 ± 0.7), indicating purifying selection in the immunovirological discordant (I+, VF+) subgroup and positive selection in the immunovirological failure (I-, VF+) subgroup. Conclusions Children and adolescents in immunovirological therapeutic failure harbor positive selection of HIV-1 strains favoring diversifying in pol-encoded amino acids. In contrast, children with persistent discordant immunovirological responses show accumulation of mutations and purifying selection in pol gene sequences, indicating limited genetic evolution and likely suggesting genetic adaptation of viruses to host functional constraints.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Laboratoire de Virologie, Hopital Europeen Georges Pompidou, Assistance Publique-Hopitaux de Paris (AP-HP) and Universite de Paris, Paris Sorbonne Cite, Paris, France.,Ecole Doctorale Regionale en Infectiologie Tropicale, Franceville, Gabon
| | - Helene Pere
- Laboratoire de Virologie, Hopital Europeen Georges Pompidou, Assistance Publique-Hopitaux de Paris (AP-HP) and Universite de Paris, Paris Sorbonne Cite, Paris, France.,Universite de Paris, Paris Sorbonne Cite, Paris, France
| | - Christian Diamant Mossoro-Kpinde
- Faculte des Sciences de la Sante, Universite de Bangui, Bangui, Central African Republic.,Laboratoire National de Biologie Clinique et de Sante Publique, Bangui, Central African Republic
| | - Pierre Roques
- Commissariat a l'Energie Atomique (CEA)-Universite Paris-Saclay; INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie Francois-Jacob (IBJF), Fontenay-aux-Roses, France
| | - Jean Chrysostome Gody
- Faculte des Sciences de la Sante, Universite de Bangui, Bangui, Central African Republic.,Complexe Pediatrique, Bangui, Central African Republic
| | - Sandrine Moussa
- Institut Pasteur de Bangui, Bangui, Central African Republic
| | - David Veyer
- Laboratoire de Virologie, Hopital Europeen Georges Pompidou, Assistance Publique-Hopitaux de Paris (AP-HP) and Universite de Paris, Paris Sorbonne Cite, Paris, France
| | - Gerard Gresenguet
- Faculte des Sciences de la Sante, Universite de Bangui, Bangui, Central African Republic.,Unite de Recherches et d'Intervention sur les Maladies Sexuellement Transmissibles et le SIDA, Departement de Sante Publique, Faculte des Sciences de la Sante de Bangui, Central African Republic
| | - Charlotte Charpentier
- IAME, UMR 1137, INSERM, Universite Paris Diderot, Sorbonne Paris Cite, AP-HP, Laboratoire de Virologie, Hopital Bichat, AP-HP, Paris, France
| | - Mohammad-Ali Jenabian
- Departement des Sciences Biologiques et Centre de Recherche BioMed, Universite du Quebec a Montreal (UQAM), Montreal, QC, Canada
| | - Joel Fleury Djoba Siawaya
- Ecole Doctorale Regionale en Infectiologie Tropicale, Franceville, Gabon.,Laboratory Medicine, Mother and Child University Hospital Jeanne Ebori, Libreville, Gabon
| | - Laurent Belec
- Laboratoire de Virologie, Hopital Europeen Georges Pompidou, Assistance Publique-Hopitaux de Paris (AP-HP) and Universite de Paris, Paris Sorbonne Cite, Paris, France.,Ecole Doctorale Regionale en Infectiologie Tropicale, Franceville, Gabon.,Universite de Paris, Paris Sorbonne Cite, Paris, France
| |
Collapse
|
2
|
Pediatric Human Immunodeficiency Virus infection and cancer in the Highly Active Antiretroviral Treatment (HAART) era. Cancer Lett 2014; 347:38-45. [DOI: 10.1016/j.canlet.2014.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/13/2014] [Accepted: 02/03/2014] [Indexed: 12/18/2022]
|
3
|
Bethell R, Scherer J, Witvrouw M, Paquet A, Coakley E, Hall D. Short communication: Phenotypic protease inhibitor resistance and cross-resistance in the clinic from 2006 to 2008 and mutational prevalences in HIV from patients with discordant tipranavir and darunavir susceptibility phenotypes. AIDS Res Hum Retroviruses 2012; 28:1019-24. [PMID: 22098079 DOI: 10.1089/aid.2011.0242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To test tipranavir (TPV) or darunavir (DRV) as treatment options for patients with phenotypic resistance to protease inhibitors (PIs), including lopinavir, saquinavir, atazanavir, and fosamprenavir, the PhenoSense GT database was analyzed for susceptibility to DRV or TPV among PI-resistant isolates. The Monogram Biosciences HIV database (South San Francisco, CA) containing 7775 clinical isolates (2006-2008) not susceptible to at least one first-generation PI was analyzed. Phenotypic responses [resistant (R), partially susceptible (PS), or susceptible (S)] were defined by upper and lower clinical cut-offs to each PI. Genotypes were screened for amino acid substitutions associated with TPV-R/DRV-S and TPV-S/DRV-R phenotypes. In all, 4.9% (378) of isolates were resistant to all six PIs and 31.0% (2407) were resistant to none. Among isolates resistant to all four first-generation PIs, DRV resistance increased from 21.2% to 41.9% from 2006 to 2008, respectively, and resistance to TPV remained steady (53.9 to 57.3%, respectively). Higher prevalence substitutions in DRV-S/TPV-R isolates versus DRV-R/TPV-S isolates, respectively, were 82L/T (44.4% vs. 0%) and 83D (5.8% vs. 0%). Higher prevalence substitutions in DRV-R/TPV-S virus were 50V (0.0% vs. 28.9%), 54L (1.0% vs. 36.1%), and 76V (0.4% vs. 15.5%). Mutations to help predict discordant susceptibility to DRV and TPV in isolates with reduced susceptibility to other PIs were identified. DRV resistance mutations associated with improved virologic response to TPV were more prevalent in DRV-R/TPV-S isolates. TPV resistance mutations were more prevalent in TPV-R and DRV-S isolates. These results confirm the impact of genotype on phenotype, illustrating how HIV genotype and phenotype data assist regimen optimization.
Collapse
Affiliation(s)
| | | | | | - Agnes Paquet
- Monogram Biosciences, South San Francisco, California
| | - Eoin Coakley
- Monogram Biosciences, South San Francisco, California
| | - David Hall
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut
| |
Collapse
|
4
|
Giaquinto C, Penazzato M, Rosso R, Bernardi S, Rampon O, Nasta P, Ammassari A, Antinori A, Badolato R, Castelli Gattinara G, d'Arminio Monforte A, De Martino M, De Rossi A, Di Gregorio P, Esposito S, Fatuzzo F, Fiore S, Franco A, Gabiano C, Galli L, Genovese O, Giacomet V, Giannattasio A, Gotta C, Guarino A, Martino A, Mazzotta F, Principi N, Regazzi MB, Rossi P, Russo R, Saitta M, Salvini F, Trotta S, Viganò A, Zuccotti G, Carosi G. Italian consensus statement on paediatric HIV infection. Infection 2010; 38:301-19. [PMID: 20514509 DOI: 10.1007/s15010-010-0020-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 03/17/2010] [Indexed: 02/01/2023]
Abstract
The objective of this document is to identify and reinforce current recommendations concerning the management of HIV infection in infants and children in the context of good resource availability. All recommendations were graded according to the strength and quality of the evidence and were voted on by the 57 participants attending the first Italian Consensus on Paediatric HIV, held in Siracusa in 2008. Paediatricians and HIV/AIDS care specialists were requested to agree on different statements summarizing key issues in the management of paediatric HIV. The comprehensive approach on preventing mother-to-child transmission (PMTCT) has clearly reduced the number of children acquiring the infection in Italy. Although further reduction of MTCT should be attempted, efforts to personalize intervention to specific cases are now required in order to optimise the treatment and care of HIV-infected children. The prompt initiation of treatment and careful selection of first-line regimen, taking into consideration potency and tolerance, remain central. In addition, opportunistic infection prevention, adherence to treatment, and long-term psychosocial consequences are becoming increasingly relevant in the era of effective antiretroviral combination therapies (ART). The increasing proportion of infected children achieving adulthood highlights the need for multidisciplinary strategies to facilitate transition to adult care and maintain strategies specific to perinatally acquired HIV infection.
Collapse
Affiliation(s)
- C Giaquinto
- Dipartimento di Pediatria, Università degli Studi di Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Canducci F, Marinozzi MC, Sampaolo M, Berrè S, Bagnarelli P, Degano M, Gallotta G, Mazzi B, Lemey P, Burioni R, Clementi M. Dynamic features of the selective pressure on the human immunodeficiency virus type 1 (HIV-1) gp120 CD4-binding site in a group of long term non progressor (LTNP) subjects. Retrovirology 2009; 6:4. [PMID: 19146663 PMCID: PMC2639529 DOI: 10.1186/1742-4690-6-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/15/2009] [Indexed: 12/14/2022] Open
Abstract
The characteristics of intra-host human immunodeficiency virus type 1 (HIV-1) env evolution were evaluated in untreated HIV-1-infected subjects with different patterns of disease progression, including 2 normal progressor [NP], and 5 Long term non-progressor [LTNP] patients. High-resolution phylogenetic analysis of the C2-C5 env gene sequences of the replicating HIV-1 was performed in sequential samples collected over a 3–5 year period; overall, 301 HIV-1 genomic RNA sequences were amplified from plasma samples, cloned, sequenced and analyzed. Firstly, the evolutionary rate was calculated separately in the 3 codon positions. In all LTNPs, the 3rd codon mutation rate was equal or even lower than that observed at the 1st and 2nd positions (p = 0.016), thus suggesting strong ongoing positive selection. A Bayesian approach and a maximum-likelihood (ML) method were used to estimate the rate of virus evolution within each subject and to detect positively selected sites respectively. A great number of N-linked glycosylation sites under positive selection were identified in both NP and LTNP subjects. Viral sequences from 4 of the 5 LTNPs showed extensive positive selective pressure on the CD4-binding site (CD4bs). In addition, localized pressure in the area of the IgG-b12 epitope, a broad neutralizing human monoclonal antibody targeting the CD4bs, was documented in one LTNP subject, using a graphic colour grade 3-dimensional visualization. Overall, the data shown here documenting high selective pressure on the HIV-1 CD4bs of a group of LTNP subjects offers important insights for planning novel strategies for the immune control of HIV-1 infection.
Collapse
Affiliation(s)
- Filippo Canducci
- Laboratorio di Microbiologia e Virologa, Università Vita-Salute San Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Buonaguro L, Petrizzo A, Tagliamonte M, Vitone F, Re MC, Pilotti E, Casoli C, Sbreglia C, Perrella O, Tornesello ML, Buonaguro FM. Molecular and phylogenetic analysis of HIV-1 variants circulating in Italy. Infect Agent Cancer 2008; 3:13. [PMID: 18847472 PMCID: PMC2586622 DOI: 10.1186/1750-9378-3-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/10/2008] [Indexed: 01/09/2023] Open
Abstract
Objective The continuous identification of HIV-1 non-B subtypes and recombinant forms in Italy indicates the need of constant molecular epidemiology survey of genetic forms circulating and transmitted in the resident population. Methods The distribution of HIV-1 subtypes has been evaluated in 25 seropositive individuals residing in Italy, most of whom were infected through a sexual route during the 1995–2005 period. Each sample has been characterized by detailed molecular and phylogenetic analyses. Results 18 of the 25 samples were positive at HIV-1 PCR amplification. Three samples showed a nucleotide divergence compatible with a non-B subtype classification. The phylogenetic analysis, performed on both HIV-1 env and gag regions, confirms the molecular sub-typing prediction, given that 1 sample falls into the C subtype and 2 into the G subtype. The B subtype isolates show high levels of intra-subtype nucleotide divergence, compatible with a long-lasting epidemic and a progressive HIV-1 molecular diversification. Conclusion The Italian HIV-1 epidemic is still mostly attributable to the B subtype, regardless the transmission route, which shows an increasing nucleotide heterogeneity. Heterosexual transmission and the interracial blending, however, are slowly introducing novel HIV-1 subtypes. Therefore, a molecular monitoring is needed to follow the constant evolution of the HIV-1 epidemic.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori Fondazione Giovanni Pascale, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Anselmi A, Vendrame D, Rampon O, Giaquinto C, Zanchetta M, De Rossi A. Immune reconstitution in human immunodeficiency virus type 1-infected children with different virological responses to anti-retroviral therapy. Clin Exp Immunol 2007; 150:442-50. [PMID: 17956580 DOI: 10.1111/j.1365-2249.2007.03526.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immune repopulation, despite virological failure, often occurs in children under highly active anti-retroviral therapy (HAART). The aim of this study was to analyse the characteristics of immune repopulation and activation in children with and without virological response to HAART. Fourteen human immunodeficiency virus type 1 (HIV-1)-infected children with suppression of HIV-1 plasma viraemia (virological responders, VR) and 16 virological non-responders (VNR) to therapy were studied at baseline and after approximately 2 years of HAART. During therapy, CD4+ T cells increased in both groups, but were higher in the VR than in the VNR group. All CD4+ T cell subsets (naive, central memory, effector/memory and CD38+) increased significantly in VR children, while there was a significant increase only in naive cells in VNR children. Naive CD8+ T cells and T cell receptor rearrangement excision circles (TREC), an indicator of thymic output, increased in both VR and VNR children. Activated CD8+ CD38+ T cells decreased in VR but remained high in VNR children. Levels of circulating lipopolysaccharide (LPS), an indicator of microbial translocation, further increased in VNR children. In conclusion, HAART induced an increase in naive cells in all children, regardless of their virological response. However, the persistence of viraemia resulted in an impaired expansion of memory CD4+ T cells susceptible to HIV-1 infection, and together with the microbial translocation sustained the persistence of a high level of immune activation.
Collapse
Affiliation(s)
- A Anselmi
- Department of Oncology and Surgical Sciences, Oncology Section, Unit of Viral Oncology, AIDS Reference Center, University of Padova, IOV-IRCCS, Padova, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM. Genetic and phylogenetic evolution of HIV-1 in a low subtype heterogeneity epidemic: the Italian example. Retrovirology 2007; 4:34. [PMID: 17517125 PMCID: PMC1892567 DOI: 10.1186/1742-4690-4-34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/21/2007] [Indexed: 11/10/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) is classified into genetic groups, subtypes and sub-subtypes which show a specific geographic distribution pattern. The HIV-1 epidemic in Italy, as in most of the Western Countries, has traditionally affected the Intra-venous drug user (IDU) and Homosexual (Homo) risk groups and has been sustained by the genetic B subtype. In the last years, however, the HIV-1 transmission rate among heterosexuals has dramatically increased, becoming the prevalent transmission route. In fact, while the traditional risk groups have high levels of knowledge and avoid high-risk practices, the heterosexuals do not sufficiently perceive the risk of HIV-1 infection. This misperception, linked to the growing number of immigrants from non-Western Countries, where non-B clades and circulating recombinant forms (CRFs) are prevalent, is progressively introducing HIV-1 variants of non-B subtype in the Italian epidemic. This is in agreement with reports from other Western European Countries. In this context, the Italian HIV-1 epidemic is still characterized by low subtype heterogeneity and represents a paradigmatic example of the European situation. The continuous molecular evolution of the B subtype HIV-1 isolates, characteristic of a long-lasting epidemic, together with the introduction of new subtypes as well as recombinant forms may have significant implications for diagnostic, treatment, and vaccine development. The study and monitoring of the genetic evolution of the HIV-1 represent, therefore, an essential strategy for controlling the local as well as global HIV-1 epidemic and for developing efficient preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Lab of Viral Oncogenesis and Immunotherapy & AIDS Refer. Center, Ist. Naz. Tumori "Fond. G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Lab of Viral Oncogenesis and Immunotherapy & AIDS Refer. Center, Ist. Naz. Tumori "Fond. G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Lab of Viral Oncogenesis and Immunotherapy & AIDS Refer. Center, Ist. Naz. Tumori "Fond. G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Lab of Viral Oncogenesis and Immunotherapy & AIDS Refer. Center, Ist. Naz. Tumori "Fond. G. Pascale", Naples, Italy
| |
Collapse
|