1
|
Zhu C, Luo X, Espulgar WV, Koyama S, Kumanogoh A, Saito M, Takamatsu H, Tamiya E. Real-Time Monitoring and Detection of Single-Cell Level Cytokine Secretion Using LSPR Technology. MICROMACHINES 2020; 11:E107. [PMID: 31963848 PMCID: PMC7019717 DOI: 10.3390/mi11010107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/14/2023]
Abstract
Cytokine secretion researches have been a main focus of studies among the scientists in the recent decades for its outstanding contribution to clinical diagnostics. Localized surface plasmon resonance (LSPR) technology is one of the conventional methods utilized to analyze these issues, as it could provide fast, label-free and real-time monitoring of biomolecule binding events. However, numerous LSPR-based biosensors in the past are usually utilized to monitor the average performance of cell groups rather than single cells. Meanwhile, the complicated sensor structures will lead to the fabrication and economic budget problems. Thus, in this paper, we report a simple synergistic integration of the cell trapping of microwell chip and gold-capped nanopillar-structured cyclo-olefin-polymer (COP) film for single cell level Interleukin 6 (IL-6) detection. Here, in-situ cytokine secreted from the trapped cell can be directly observed and analyzed through the peak red-shift in the transmittance spectrum. The fabricated device also shows the potential to conduct the real-time monitoring which would greatly help us identify the viability and biological variation of the tested single cell.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (C.Z.); (W.V.E.); (M.S.)
| | - Xi Luo
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (C.Z.); (W.V.E.); (M.S.)
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wilfred Villariza Espulgar
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (C.Z.); (W.V.E.); (M.S.)
| | - Shohei Koyama
- Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (S.K.); (A.K.); (H.T.)
| | - Atsushi Kumanogoh
- Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (S.K.); (A.K.); (H.T.)
| | - Masato Saito
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (C.Z.); (W.V.E.); (M.S.)
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hyota Takamatsu
- Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (S.K.); (A.K.); (H.T.)
| | - Eiichi Tamiya
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (C.Z.); (W.V.E.); (M.S.)
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Luo Y, Xiong D, Li HH, Qiu SP, Lin CL, Chen Q, Huang CH, Yuan Q, Zhang J, Xia NS. Development of an HSV-1 neutralization test with a glycoprotein D specific antibody for measurement of neutralizing antibody titer in human sera. Virol J 2016; 13:44. [PMID: 26987753 PMCID: PMC4797254 DOI: 10.1186/s12985-016-0508-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
Background Investigating the neutralizing antibody (NAb) titer against HSV-1 is essential for monitoring the immune protection against HSV-1 in susceptible populations, which would facilitate the development of vaccines against herpes infection and improvement of HSV-1 based oncolytic virotherapy. Results In this study, we have developed a neutralization test based on the enzyme-linked immunospot assay (ELISPOT-NT) to determine the neutralizing antibody titer against HSV-1 in human serum samples. This optimized assay employed a monoclonal antibody specifically recognizing glycoprotein D to detect the HSV-1 infected cells. With this test, the neutralizing antibody titer against HSV-1 could be determined within one day by automated interpretation of the counts of cell spots. We observed good correlation in the results obtained from ELISPOT-NT and plaque reduction neutralization test (PRNT) by testing 22 human serum samples representing different titers. Moreover, 269 human serum samples collected from a wide range of age groups were tested, the average neutralizing antibody titer (log2NT50) was 8.3 ± 2.8 and the prevalence of NAbs was 83.6 % in this cohort, it also revealed that the average neutralizing antibody titer in different groups increased with the age, and no significant difference in neutralizing antibody titers was observed between males and females. Conclusions These results prove that this novel assay would serve as an accurate and simple assay for the assessment of the neutralizing antibody titers against HSV-1 in large cohorts.
Collapse
Affiliation(s)
- Yong Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dan Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.,School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Huan-Huan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.,School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Sheng-Ping Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.,School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chao-Long Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.,School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Qin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.,School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Cheng-Hao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China. .,School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW HIV-1 neutralizing antibodies are directed to the Envelope glycoprotein trimer on the surface of the virion and block entry into target cells in vitro. During infection, closely related but distinct variants arise in infected individuals, and the interplay of Envelope and neutralizing antibodies is a dynamic process. Vaccines that generate neutralizing antibodies and drugs that inhibit entry must address the issue of variation of subtypes worldwide. The purpose of this review is to summarize major advances in the neutralizing antibody field published during 2005 and early 2006. RECENT FINDINGS The main themes that are covered in this review include new findings in the development of neutralizing antibodies during natural and experimental infection, characterization of monoclonal antibodies with neutralizing activity, Envelope structural data, the development of novel Envelope constructs, and novel approaches designed to generate neutralizing antibodies by vaccination. SUMMARY Advances leading to a better understanding of the structure of the Envelope and the character of neutralizing antibodies that develop during the course of infection have provided important clues to guide the design of better immunogens and drugs to block attachment. These findings have implications for prophylactic and therapeutic vaccine approaches, drugs, and antibody-based therapies to reduce HIV transmission.
Collapse
|