1
|
Ambike SS, Thakar MR, Patil AA, Gangakhedkar RR, Kurle SN. Partial pol Sequences from Drug Naive HIV-2 Infected Individuals from Maharashtra, India. AIDS Res Hum Retroviruses 2019; 35:505-508. [PMID: 30681008 DOI: 10.1089/aid.2018.0282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HIV-2 is important due to its unique challenges in diagnosis, treatment, and drug resistance. The data on Indian HIV-2 pol gene as well as resistance to antiretroviral drugs are limited. Here we report sequence data of protease (PR) and reverse transcriptase (RT) genes from HIV-2 infected treatment naive individuals (N = 32) from Maharashtra, India. These sequences were found to be closely related to HIV-2 subtype A sequences from Guinea Bissau. We observed two unique residues at positions 14 and 70 in the PR region specific to Indian HIV-2. Mutations associated with resistance to RT and protease inhibitors were observed in 3 of 32 (9.37%) samples. To our knowledge, this is the first study from India to report drug resistance among treatment naive HIV-2 infected individuals. The results emphasize need for larger nationwide surveillance for HIV-2 drug resistance to better understand the primary drug resistance among HIV-2 infected individuals.
Collapse
Affiliation(s)
- Shubhankar S. Ambike
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune, India
| | - Madhuri R. Thakar
- Department of Immunology and Serology, National AIDS Research Institute, Pune, India
| | - Ajit A. Patil
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune, India
| | | | - Swarali N. Kurle
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune, India
| |
Collapse
|
2
|
Döring M, Borrego P, Büch J, Martins A, Friedrich G, Camacho RJ, Eberle J, Kaiser R, Lengauer T, Taveira N, Pfeifer N. A genotypic method for determining HIV-2 coreceptor usage enables epidemiological studies and clinical decision support. Retrovirology 2016; 13:85. [PMID: 27998283 PMCID: PMC5168878 DOI: 10.1186/s12977-016-0320-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
Background CCR5-coreceptor antagonists can be used for treating HIV-2 infected individuals. Before initiating treatment with coreceptor antagonists, viral coreceptor usage should be determined to ensure that the virus can use only the CCR5 coreceptor (R5) and cannot evade the drug by using the CXCR4 coreceptor (X4-capable). However, until now, no online tool for the genotypic identification of HIV-2 coreceptor usage had been available. Furthermore, there is a lack of knowledge on the determinants of HIV-2 coreceptor usage. Therefore, we developed a data-driven web service for the prediction of HIV-2 coreceptor usage from the V3 loop of the HIV-2 glycoprotein and used the tool to identify novel discriminatory features of X4-capable variants. Results Using 10 runs of tenfold cross validation, we selected a linear support vector machine (SVM) as the model for geno2pheno[coreceptor-hiv2], because it outperformed the other SVMs with an area under the ROC curve (AUC) of 0.95. We found that SVMs were highly accurate in identifying HIV-2 coreceptor usage, attaining sensitivities of 73.5% and specificities of 96% during tenfold nested cross validation. The predictive performance of SVMs was not significantly different (p value 0.37) from an existing rules-based approach. Moreover, geno2pheno[coreceptor-hiv2] achieved a predictive accuracy of 100% and outperformed the existing approach on an independent data set containing nine new isolates with corresponding phenotypic measurements of coreceptor usage. geno2pheno[coreceptor-hiv2] could not only reproduce the established markers of CXCR4-usage, but also revealed novel markers: the substitutions 27K, 15G, and 8S were significantly predictive of CXCR4 usage. Furthermore, SVMs trained on the amino-acid sequences of the V1 and V2 loops were also quite accurate in predicting coreceptor usage (AUCs of 0.84 and 0.65, respectively). Conclusions In this study, we developed geno2pheno[coreceptor-hiv2], the first online tool for the prediction of HIV-2 coreceptor usage from the V3 loop. Using our method, we identified novel amino-acid markers of X4-capable variants in the V3 loop and found that HIV-2 coreceptor usage is also influenced by the V1/V2 region. The tool can aid clinicians in deciding whether coreceptor antagonists such as maraviroc are a treatment option and enables epidemiological studies investigating HIV-2 coreceptor usage. geno2pheno[coreceptor-hiv2] is freely available at http://coreceptor-hiv2.geno2pheno.org. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0320-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Döring
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E 1 4, 66123, Saarbrücken, Germany.
| | - Pedro Borrego
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Centro de Administração e Políticas Públicas (CAPP), Instituto Superior de Ciências Sociais e Políticas (ISCSP), University of Lisbon, Rua Almerindo Lessa, 1300-663, Lisbon, Portugal
| | - Joachim Büch
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E 1 4, 66123, Saarbrücken, Germany
| | - Andreia Martins
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Georg Friedrich
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E 1 4, 66123, Saarbrücken, Germany
| | - Ricardo Jorge Camacho
- Rega Institute for Medical Research, Clinical and Epidemiological Virology, Department of Microbiology and Immunology, KU Leuven-University of Leuven, Minderbroedersstraat 10, 3000, Louvain, Belgium
| | - Josef Eberle
- Department of Virology, Max von Pettenkofer-Institut, Ludwig-Maximilians-University, Pettenkoferstraße 9a, 80336, Munich, Germany
| | - Rolf Kaiser
- Institute for Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Thomas Lengauer
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E 1 4, 66123, Saarbrücken, Germany
| | - Nuno Taveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Instituto Superior de Ciências da Saúde Egas Moniz (ISCSEM), Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511, Caparica, Portugal
| | - Nico Pfeifer
- Department for Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E 1 4, 66123, Saarbrücken, Germany.
| |
Collapse
|
4
|
Hodges-Mameletzis I, De Bree GJ, Rowland-Jones SL. An underestimated lentivirus model: what can HIV-2 research contribute to the development of an effective HIV-1 vaccine? Expert Rev Anti Infect Ther 2011; 9:195-206. [PMID: 21342067 DOI: 10.1586/eri.10.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of an HIV-1 vaccine that would be effective against all existing subtypes and circulating recombinant forms remains one of the great scientific and public health challenges of our generation. One of the major barriers to HIV-1 vaccine development is a lack of understanding of the correlates of protective immunity against the virus. In this context, research has focused on the rare phenomenon of spontaneous control of HIV-1 infection, in groups referred to as 'long-term nonprogressors' and 'elite controllers', together with models of nonprogressive sooty mangabey simian immunodeficiency (SIV) infection in African nonhuman primate hosts such as sooty mangabeys and African green monkeys, in which the majority of animals tolerate high levels of viral replication without development of immunodeficiency or disease. Much less attention has been given to humans infected with the nonpandemic strain HIV-2, derived from the SIV in West Africa, most of whom behave as long-term nonprogressors or viral controllers, while a minority develop disease clinically indistinguishable from AIDS caused by HIV-1. This apparent dichotomous outcome is, based on the evidence accumulated to date, more clearly related to the host immune response than the good clinical outcome of HIV-1 controllers. We propose that complementing research into HIV-1 controllers and nonpathogenic SIV models with the prioritization of HIV-2 research could enhance the HIV-1 vaccine research effort. The absence of disease progression or detectable plasma viral replication in the presence of an effective immune response in most patients living with HIV-2 represents an opportunity to unravel the virus' evolutionary adaptation in human hosts and to establish the correlates of such a protective response.
Collapse
|