1
|
Smoleń-Dzirba J, Rosińska M, Kruszyński P, Bratosiewicz-Wąsik J, Wojtyczka R, Janiec J, Szetela B, Beniowski M, Bociąga-Jasik M, Jabłonowska E, Wąsik TJ, The Cascade Collaboration In EuroCoord A. Prevalence of Transmitted Drug-Resistance Mutations and Polymorphisms in HIV-1 Reverse Transcriptase, Protease, and gp41 Sequences Among Recent Seroconverters in Southern Poland. Med Sci Monit 2017; 23:682-694. [PMID: 28167814 PMCID: PMC5310230 DOI: 10.12659/msm.898656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Monitoring of drug resistance-related mutations among patients with recent HIV-1 infection offers an opportunity to describe current patterns of transmitted drug resistance (TDR) mutations. Material/Methods Of 298 individuals newly diagnosed from March 2008 to February 2014 in southern Poland, 47 were deemed to have recent HIV-1 infection by the limiting antigen avidity immunoassay. Proviral DNA was amplified and sequenced in the reverse transcriptase, protease, and gp41 coding regions. Mutations were interpreted according to the Stanford Database algorithm and/or the International Antiviral Society USA guidelines. TDR mutations were defined according to the WHO surveillance list. Results Among 47 patients with recent HIV-1 infection only 1 (2%) had evidence of TDR mutation. No major resistance mutations were found, but the frequency of strains with ≥1 accessory resistance-associated mutations was high, at 98%. Accessory mutations were present in 11% of reverse transcriptase, 96% of protease, and 27% of gp41 sequences. Mean number of accessory resistance mutations in the reverse transcriptase and protease sequences was higher in viruses with no compensatory mutations in the gp41 HR2 domain than in strains with such mutations (p=0.031). Conclusions Despite the low prevalence of strains with TDR mutations, the frequency of accessory mutations was considerable, which may reflect the history of drug pressure among transmitters or natural viral genetic diversity, and may be relevant for future clinical outcomes. The accumulation of the accessory resistance mutations within the pol gene may restrict the occurrence of compensatory mutations related to enfuvirtide resistance or vice versa.
Collapse
Affiliation(s)
- Joanna Smoleń-Dzirba
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Magdalena Rosińska
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Piotr Kruszyński
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Jolanta Bratosiewicz-Wąsik
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Robert Wojtyczka
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Janusz Janiec
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Hepatology, and Acquired Immune Deficiencies, Wrocław Medical University, Wrocław, Poland
| | - Marek Beniowski
- Outpatient Clinic for AIDS Diagnostics and Therapy, Specialistic Hospital in Chorzów, Chorzów, Poland
| | - Monika Bociąga-Jasik
- Department of Infectious Diseases, Jagiellonian University Medical College, Cracow, Poland
| | - Elżbieta Jabłonowska
- Department of Infectious Diseases and Hepatology, Medical University of Łódź, Łódź, Poland
| | - Tomasz J Wąsik
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
2
|
Alam M, Kuwata T, Shimura K, Yokoyama M, Ramirez Valdez KP, Tanaka K, Maruta Y, Oishi S, Fujii N, Sato H, Matsuoka M, Matsushita S. Enhanced antibody-mediated neutralization of HIV-1 variants that are resistant to fusion inhibitors. Retrovirology 2016; 13:70. [PMID: 27670680 PMCID: PMC5037607 DOI: 10.1186/s12977-016-0304-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HIV-1 typically develops resistance to any single antiretroviral agent. Combined anti-retroviral therapy to reduce drug-resistance development is necessary to control HIV-1 infection. Here, to assess the utility of a combination of antibody and fusion inhibitor treatments, we investigated the potency of monoclonal antibodies at neutralizing HIV-1 variants that are resistant to fusion inhibitors. RESULTS Mutations that confer resistance to four fusion inhibitors, enfuvirtide, C34, SC34, and SC34EK, were introduced into the envelope of HIV-1JR-FL, a CCR5-tropic tier 2 strain. Pseudoviruses with these mutations were prepared and used for the assessment of neutralization sensitivity to an array of antibodies. The resulting neutralization data indicate that the potencies of some antibodies, especially of those against the CD4 binding site, V3 loop, and membrane-proximal external region epitopes, were increased by the mutations in gp41 that conferred resistance to the fusion inhibitors. C34-, SC34-, and SC34EK-resistant mutants showed more sensitivity to monoclonal antibodies than enfuvirtide-resistant mutants. An analysis of C34-resistant mutations revealed that the I37K mutation in gp41 HR1 is a key mutation for C34 resistance, low infectivity, neutralization sensitivity, epitope exposure, and slow fusion kinetics. The N126K mutation in the gp41 HR2 domain contributed to C34 resistance and neutralization sensitivity to anti-CD4 binding site antibodies. In the absence of L204I, the effect of N126K was antagonistic to that of I37K. The results of a molecular dynamic simulation of the envelope trimer confirmation suggest that an I37K mutation induces the augmentation of structural fluctuations prominently in the interface between gp41 and gp120. Our observations indicate that the "conformational unmasking" of envelope glycoprotein by an I37K mutation is one of the mechanisms of neutralization sensitivity enhancement. Furthermore, the enhanced neutralization of C34-resistant mutants in vivo was shown by its high rate of neutralization by IgG from HIV patient samples. CONCLUSIONS Mutations in gp41 that confer fusion inhibitor resistance exert enhanced sensitivity to broad neutralizing antibodies (e.g., VRC01 and 10E8) and other conventional antibodies developed in HIV-1 infected patients. Therefore, next-generation fusion inhibitors and monoclonal antibodies could be a potential combination for future regimens of combined antiretroviral therapy.
Collapse
Affiliation(s)
- Muntasir Alam
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Takeo Kuwata
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Kazuya Shimura
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kristel Paola Ramirez Valdez
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Kazuki Tanaka
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Yasuhiro Maruta
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shuzo Matsushita
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| |
Collapse
|
3
|
Jang DH, Yoon CH, Choi BS, Chung YS, Kim HY, Chi SG, Kim SS. Characterization of Gp41 polymorphisms in the fusion peptide domain and T-20 (Enfuvirtide) resistance-associated regions in Korean HIV-1 isolates. J Korean Med Sci 2014; 29:456-9. [PMID: 24616600 PMCID: PMC3945146 DOI: 10.3346/jkms.2014.29.3.456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/16/2013] [Indexed: 11/20/2022] Open
Abstract
HIV-1 gp41 is an envelope protein that plays an essential role in virus entry. The mutation of gp41 affects HIV-1 entry and susceptibility to the fusion inhibitor T-20. Therefore, we analyzed the natural polymorphism of gp41 of 163 HIV-1 isolates from T-20-naïve Koreans infected with HIV-1. This study of gp41 polymorphisms showed that insertions in the fourth threonine (74.8%) and L7M substitutions (85.3%) were more frequent in the fusion peptide motif in Korean HIV-1 isolates compared with those from other countries. Minor T-20 resistance mutations such as L45M (1.2%), N126K (1.2%), and E137K (6.7%) were detected, but the critical T-20 resistance mutations were not detected in the gp41 HR1 and HR2 regions. In addition, the N42S mutation (12.9%) associated with T-20 hypersusceptibility was detected at a high frequency. These results may serve as useful data for studies considering T-20 for use in the development of a more effective anti-retroviral treatment in Korea.
Collapse
Affiliation(s)
- Dai-Ho Jang
- Division of AIDS, Korea National Institute of Health, Cheongwon, Korea
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Cheol-Hee Yoon
- Division of AIDS, Korea National Institute of Health, Cheongwon, Korea
| | - Byeong-Sun Choi
- Division of AIDS, Korea National Institute of Health, Cheongwon, Korea
| | - Yoon-Seok Chung
- Division of AIDS, Korea National Institute of Health, Cheongwon, Korea
| | - Hye-Young Kim
- Division of AIDS, Korea National Institute of Health, Cheongwon, Korea
| | - Sung-Gil Chi
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sung Soon Kim
- Division of AIDS, Korea National Institute of Health, Cheongwon, Korea
| |
Collapse
|
4
|
Dimonte S, Mercurio F, Svicher V, Perno CF, Ceccherini-Silberstein F. Genetic and structural analysis of HIV-1 Rev responsive element related to V38A and T18A enfuvirtide resistance mutations. Intervirology 2011; 55:385-90. [PMID: 22188777 DOI: 10.1159/000334696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 10/24/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND For the expression of late viral genes, HIV-1 efficiently exploits the nuclear export by using Rev viral protein, which specifically binds the RNA Rev Responsive Element (RRE). This region is contained within the gp120-gp41 encoding sequence. Enfuvirtide is the first approved HIV-1 fusion-inhibitor, and gp41 codons associated with primary enfuvirtide-resistance (amino-acids 36-45) are localized within the RRE structure. We previously found the co-presence of V38A+T18A resistance mutations in patients failing enfuvirtide. METHODS Collecting 476 and 135 HIV-1 B-subtype gp41 sequences from enfuvirtide-naïve and enfuvirtide-treated patients, respectively, two mutations previously found associated with enfuvirtide treatment, T18A and V38A, were analyzed. Moreover, the RNA secondary structure was displayed by CONTRAfold-software and the gp41 evolutionary pathways by a mutagenetic tree. RESULTS By modeling the RRE structure, we show that the T18 and V38 codons are base pairing within the RRE-stem-IIA, an important domain involved in Rev binding. While a structural RRE impairment in the presence of V38A alone was found, a restoration of the original RRE structure occurred in co-presence of V38A+T18A. By mutagenetic tree analysis, a compensatory evolution confirming our hypothesis on the structural modification mechanism was observed. CONCLUSION We show that enfuvirtide pressure may also affect specific RRE domains involved in Rev binding, thus requiring a compensatory evolution able to preserve the secondary structure of the RRE.
Collapse
Affiliation(s)
- Salvatore Dimonte
- University of Rome Tor Vergata, Rome, Italy. salvatore.dimonte @ uniroma2.it
| | | | | | | | | |
Collapse
|
5
|
Selection with a peptide fusion inhibitor corresponding to the first heptad repeat of HIV-1 gp41 identifies two genetic pathways conferring cross-resistance to peptide fusion inhibitors corresponding to the first and second heptad repeats (HR1 and HR2) of gp41. J Virol 2011; 85:12929-38. [PMID: 21994458 DOI: 10.1128/jvi.05391-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We generated four HIV-1 cultures that are resistant to a peptide fusion inhibitor corresponding to the first heptad repeat of gp41 in order to study mechanisms of resistance and gain insights into envelope glycoprotein-mediated membrane fusion. Two genetic pathways emerged that were defined by acquisition of a specific mutation in either the first or second heptad repeat region of gp41 (HR1 or the HR2, respectively). Each pathway was enriched in mutations that clustered in either HR2 and V3 or in HR1 and residues in or near CD4 contact sites. The gp41 mutations in both pathways not only accounted for resistance to the selecting HR1 peptide but also conferred cross-resistance to HR2 peptide fusion inhibitors and enhanced the stability of the six-helix bundle formed by the self-assembly of HR1 and HR2. The gp120 mutations alone enhanced fusion but did not appear to directly contribute to resistance. The implications of these findings for resistance mechanisms and regulation of envelope-mediated fusion are discussed.
Collapse
|