1
|
Diaz-Cánova D, Moens U, Brinkmann A, Nitsche A, Okeke MI. Whole genome sequencing of recombinant viruses obtained from co-infection and superinfection of Vero cells with modified vaccinia virus ankara vectored influenza vaccine and a naturally occurring cowpox virus. Front Immunol 2024; 15:1277447. [PMID: 38633245 PMCID: PMC11021749 DOI: 10.3389/fimmu.2024.1277447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as recombinant vector vaccine against infectious diseases and cancers in humans and animals. However, one biosafety concern about the use of MVA vectored vaccine is the potential for MVA to recombine with naturally occurring orthopoxviruses in cells and hosts in which it multiplies poorly and, therefore, producing viruses with mosaic genomes with altered genetic and phenotypic properties. We previously conducted co-infection and superinfection experiments with MVA vectored influenza vaccine (MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-permissive to MVA infection) and showed that recombination occurred in both co-infected and superinfected cells. In this study, we selected the putative recombinant viruses and performed genomic characterization of these viruses. Some putative recombinant viruses displayed plaque morphology distinct of that of the parental viruses. Our analysis demonstrated that they had mosaic genomes of different lengths. The recombinant viruses, with a genome more similar to MVA-HANP (>50%), rescued deleted and/or fragmented genes in MVA and gained new host ranges genes. Our analysis also revealed that some MVA-HANP contained a partially deleted transgene expression cassette and one recombinant virus contained part of the transgene expression cassette similar to that incomplete MVA-HANP. The recombination in co-infected and superinfected Vero cells resulted in recombinant viruses with unpredictable biological and genetic properties as well as recovery of delete/fragmented genes in MVA and transfer of the transgene into replication competent CPXV. These results are relevant to hazard characterization and risk assessment of MVA vectored biologicals.
Collapse
Affiliation(s)
- Diana Diaz-Cánova
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Annika Brinkmann
- WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Malachy Ifeanyi Okeke
- Section of Biomedical Sciences, Department of Natural and Environmental Sciences, School of Arts and Sciences, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
2
|
Orlova OV, Glazkova DV, Bogoslovskaya EV, Shipulin GA, Yudin SM. Development of Modified Vaccinia Virus Ankara-Based Vaccines: Advantages and Applications. Vaccines (Basel) 2022; 10:vaccines10091516. [PMID: 36146594 PMCID: PMC9503770 DOI: 10.3390/vaccines10091516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a promising viral vector for vaccine development. MVA is well studied and has been widely used for vaccination against smallpox in Germany. This review describes the history of the origin of the virus and its properties as a vaccine, including a high safety profile. In recent years, MVA has found its place as a vector for the creation of vaccines against various diseases. To date, a large number of vaccine candidates based on the MVA vector have already been developed, many of which have been tested in preclinical and clinical studies. We discuss data on the immunogenicity and efficacy of some of these vaccines.
Collapse
|
3
|
Fathi A, Dahlke C, Krähling V, Kupke A, Okba NMA, Raadsen MP, Heidepriem J, Müller MA, Paris G, Lassen S, Klüver M, Volz A, Koch T, Ly ML, Friedrich M, Fux R, Tscherne A, Kalodimou G, Schmiedel S, Corman VM, Hesterkamp T, Drosten C, Loeffler FF, Haagmans BL, Sutter G, Becker S, Addo MM. Increased neutralization and IgG epitope identification after MVA-MERS-S booster vaccination against Middle East respiratory syndrome. Nat Commun 2022; 13:4182. [PMID: 35853863 PMCID: PMC9295877 DOI: 10.1038/s41467-022-31557-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
Vaccine development is essential for pandemic preparedness. We previously conducted a Phase 1 clinical trial of the vector vaccine candidate MVA-MERS-S against the Middle East respiratory syndrome coronavirus (MERS-CoV), expressing its full spike glycoprotein (MERS-CoV-S), as a homologous two-dose regimen (Days 0 and 28). Here, we evaluate the safety (primary objective) and immunogenicity (secondary and exploratory objectives: magnitude and characterization of vaccine-induced humoral responses) of a third vaccination with MVA-MERS-S in a subgroup of trial participants one year after primary immunization. MVA-MERS-S booster vaccination is safe and well-tolerated. Both binding and neutralizing anti-MERS-CoV antibody titers increase substantially in all participants and exceed maximum titers observed after primary immunization more than 10-fold. We identify four immunogenic IgG epitopes, located in the receptor-binding domain (RBD, n = 1) and the S2 subunit (n = 3) of MERS-CoV-S. The level of baseline anti-human coronavirus antibody titers does not impact the generation of anti-MERS-CoV antibody responses. Our data support the rationale of a booster vaccination with MVA-MERS-S and encourage further investigation in larger trials. Trial registration: Clinicaltrials.gov NCT03615911.
Collapse
Affiliation(s)
- Anahita Fathi
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, First Department of Medicine, Division of Infectious Diseases, Hamburg, Germany
| | - Christine Dahlke
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Verena Krähling
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research, partner site Gießen-Marburg-Langen, Marburg, Germany
| | - Alexandra Kupke
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research, partner site Gießen-Marburg-Langen, Marburg, Germany
| | - Nisreen M A Okba
- Erasmus Medical Center, Department of Viroscience, Rotterdam, the Netherlands
| | - Matthijs P Raadsen
- Erasmus Medical Center, Department of Viroscience, Rotterdam, the Netherlands
| | - Jasmin Heidepriem
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
| | - Marcel A Müller
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research, partner site Berlin, Berlin, Germany
| | - Grigori Paris
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
| | - Susan Lassen
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Michael Klüver
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research, partner site Gießen-Marburg-Langen, Marburg, Germany
| | - Asisa Volz
- University of Veterinary Medicine Hanover, Institute of Virology, Hanover, Germany
- German Center for Infection Research, partner site Hanover-Brunswick, Hanover, Germany
| | - Till Koch
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, First Department of Medicine, Division of Infectious Diseases, Hamburg, Germany
| | - My L Ly
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Monika Friedrich
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Robert Fux
- LMU University of Munich, Institute of Infectious Diseases and Zoonoses, Munich, Germany
- German Center for Infection Research, partner site Munich, Munich, Germany
| | - Alina Tscherne
- LMU University of Munich, Institute of Infectious Diseases and Zoonoses, Munich, Germany
- German Center for Infection Research, partner site Munich, Munich, Germany
| | - Georgia Kalodimou
- LMU University of Munich, Institute of Infectious Diseases and Zoonoses, Munich, Germany
- German Center for Infection Research, partner site Munich, Munich, Germany
| | - Stefan Schmiedel
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, First Department of Medicine, Division of Infectious Diseases, Hamburg, Germany
| | - Victor M Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research, partner site Berlin, Berlin, Germany
| | - Thomas Hesterkamp
- German Center for Infection Research, Translational Project Management Office, Brunswick, Germany
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research, partner site Berlin, Berlin, Germany
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
| | - Bart L Haagmans
- Erasmus Medical Center, Department of Viroscience, Rotterdam, the Netherlands
| | - Gerd Sutter
- LMU University of Munich, Institute of Infectious Diseases and Zoonoses, Munich, Germany
- German Center for Infection Research, partner site Munich, Munich, Germany
| | - Stephan Becker
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research, partner site Gießen-Marburg-Langen, Marburg, Germany
| | - Marylyn M Addo
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany.
- Bernhard-Nocht-Institute for Tropical Medicine, Department for Clinical Immunology of Infectious Diseases, Hamburg, Germany.
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
4
|
Msafiri F, Manjate A, Lindroth S, Tembe N, Chissumba RM, Cumbane V, Jani I, Aboud S, Lyamuya E, Andersson S, Nilsson C. Vaccine-Induced Seroreactivity Impacts the Accuracy of HIV Testing Algorithms in Sub-Saharan Africa: An Exploratory Study. Vaccines (Basel) 2022; 10:vaccines10071062. [PMID: 35891226 PMCID: PMC9316099 DOI: 10.3390/vaccines10071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
The detection of vaccine-induced HIV antibody responses by rapid diagnostic tests (RDTs) may confound the interpretation of HIV testing results. We assessed the impact of vaccine-induced seroreactivity (VISR) on the diagnosis of HIV in sub-Saharan Africa. Samples collected from healthy participants of HIVIS and TaMoVac HIV vaccine trials after the final vaccination were analyzed for VISR using HIV testing algorithms used in Mozambique and Tanzania that employ two sequential RDTs. The samples were also tested for VISR using Enzygnost HIV Integral 4 ELISA and HIV western blot assays. Antibody titers to subtype C gp140 were determined using an in-house enzyme-linked immunosorbent assay (ELISA). The frequency of VISR was 93.4% (128/137) by Enzygnost HIV Integral 4 ELISA, and 66.4% (91/137) by western blot assay (WHO interpretation). The proportion of vaccine recipients that would have been misdiagnosed as HIV-positive in Mozambique was half of that in Tanzania: 26.3% (36/137) and 54.0% (74/137), respectively, p < 0.0001. In conclusion, the HIV RDTs and algorithms assessed here will potentially misclassify a large proportion of the HIV vaccine recipients if no other test is used. Increased efforts are needed to develop differential serological or molecular tools for use at the point of care.
Collapse
Affiliation(s)
- Frank Msafiri
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (S.A.); (E.L.)
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
- Correspondence:
| | - Alice Manjate
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo P.O. Box 257, Mozambique;
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (S.L.); (S.A.)
| | - Sarah Lindroth
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (S.L.); (S.A.)
| | - Nelson Tembe
- Instituto Nacional de Saúde, Maputo P.O. Box 3943, Mozambique; (N.T.); (R.M.C.); (V.C.); (I.J.)
| | | | - Victoria Cumbane
- Instituto Nacional de Saúde, Maputo P.O. Box 3943, Mozambique; (N.T.); (R.M.C.); (V.C.); (I.J.)
| | - Ilesh Jani
- Instituto Nacional de Saúde, Maputo P.O. Box 3943, Mozambique; (N.T.); (R.M.C.); (V.C.); (I.J.)
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (S.A.); (E.L.)
| | - Eligius Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (S.A.); (E.L.)
| | - Sören Andersson
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden; (S.L.); (S.A.)
- Public Health Agency of Sweden, 17182 Solna, Sweden
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
- Public Health Agency of Sweden, 17182 Solna, Sweden
| |
Collapse
|
5
|
Msafiri F, Joachim A, Held K, Nadai Y, Chissumba RM, Geldmacher C, Aboud S, Stöhr W, Viegas E, Kroidl A, Bakari M, Munseri PJ, Wahren B, Sandström E, Robb ML, McCormack S, Joseph S, Jani I, Ferrari G, Rao M, Biberfeld G, Lyamuya E, Nilsson C. Frequent Anti-V1V2 Responses Induced by HIV-DNA Followed by HIV-MVA with or without CN54rgp140/GLA-AF in Healthy African Volunteers. Microorganisms 2020; 8:microorganisms8111722. [PMID: 33158007 PMCID: PMC7693996 DOI: 10.3390/microorganisms8111722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Antibody responses that correlated with reduced risk of HIV acquisition in the RV144 efficacy trial were assessed in healthy African volunteers who had been primed three times with HIV-DNA (subtype A, B, C) and then randomized into two groups; group 1 was boosted twice with HIV-MVA (CRF01_AE) and group 2 with the same HIV-MVA coadministered with subtype C envelope (Env) protein (CN54rgp140/GLA-AF). The fine specificity of plasma Env-specific antibody responses was mapped after the final vaccination using linear peptide microarray technology. Binding IgG antibodies to the V1V2 loop in CRF01_AE and subtype C Env and Env-specific IgA antibodies were determined using enzyme-linked immunosorbent assay. Functional antibody-dependent cellular cytotoxicity (ADCC)-mediating antibody responses were measured using luciferase assay. Mapping of linear epitopes within HIV-1 Env demonstrated strong targeting of the V1V2, V3, and the immunodominant region in gp41 in both groups, with additional recognition of two epitopes located in the C2 and C4 regions in group 2. A high frequency of V1V2-specific binding IgG antibody responses was detected to CRF01_AE (77%) and subtype C antigens (65%). In conclusion, coadministration of CN54rgp140/GLA-AF with HIV-MVA did not increase the frequency, breadth, or magnitude of anti-V1V2 responses or ADCC-mediating antibodies induced by boosting with HIV-MVA alone.
Collapse
Affiliation(s)
- Frank Msafiri
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (A.J.); (S.A.); (E.L.)
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
- Correspondence: or
| | - Agricola Joachim
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (A.J.); (S.A.); (E.L.)
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany; (K.H.); (Y.N.); (C.G.); (A.K.)
- German Center for Infection Research (DZIF), partner site Munich, 80802 Munich, Germany
| | - Yuka Nadai
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany; (K.H.); (Y.N.); (C.G.); (A.K.)
- German Center for Infection Research (DZIF), partner site Munich, 80802 Munich, Germany
| | | | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany; (K.H.); (Y.N.); (C.G.); (A.K.)
- German Center for Infection Research (DZIF), partner site Munich, 80802 Munich, Germany
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (A.J.); (S.A.); (E.L.)
| | - Wolfgang Stöhr
- MRC Clinical Trials Unit at UCL, London WC1V 6LJ, UK; (W.S.); (S.M.)
| | - Edna Viegas
- Instituto Nacional de Saúde, Maputo 3943, Mozambique; (R.M.C.); (E.V.); (I.J.)
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany; (K.H.); (Y.N.); (C.G.); (A.K.)
- German Center for Infection Research (DZIF), partner site Munich, 80802 Munich, Germany
| | - Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (M.B.); (P.J.M.)
| | - Patricia J. Munseri
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (M.B.); (P.J.M.)
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobel’s Rd 16, 17177 Stockholm, Sweden;
| | - Eric Sandström
- Karolinska Institutet at Södersjukhuset, Södersjukhuset, 11883 Stockholm, Sweden;
| | - Merlin L. Robb
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA;
| | - Sheena McCormack
- MRC Clinical Trials Unit at UCL, London WC1V 6LJ, UK; (W.S.); (S.M.)
| | | | - Ilesh Jani
- Instituto Nacional de Saúde, Maputo 3943, Mozambique; (R.M.C.); (E.V.); (I.J.)
| | - Guido Ferrari
- Department of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Gunnel Biberfeld
- Department of Global Public Health, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Eligius Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (A.J.); (S.A.); (E.L.)
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Microbiology, Public Health Agency of Sweden, 17182 Solna, Sweden
| |
Collapse
|
6
|
Human Immunodeficiency Virus C.1086 Envelope gp140 Protein Boosts following DNA/Modified Vaccinia Virus Ankara Vaccination Fail To Enhance Heterologous Anti-V1V2 Antibody Response and Protection against Clade C Simian-Human Immunodeficiency Virus Challenge. J Virol 2019; 93:JVI.00934-19. [PMID: 31341049 DOI: 10.1128/jvi.00934-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
The RV144 human immunodeficiency virus type 1 (HIV-1) vaccine trial showed a strong association between anti-gp70 V1V2 scaffold (V1V2) and anti-V2 hot spot peptide (V2 HS) antibody responses and reduced risk of HIV infection. Accordingly, a primary goal for HIV vaccines is to enhance the magnitude and breadth of V1V2 and V2 HS antibody responses in addition to neutralizing antibodies. Here, we tested the immunogenicity and efficacy of HIV-1 C.1086 gp140 boosts administered sequentially after priming with CD40L-adjuvanted DNA/simian-human immunodeficiency virus (SHIV) and boosting with modified vaccinia virus Ankara (MVA)-SHIV vaccines in rhesus macaques. The DNA/MVA vaccination induced robust vaccine-specific CD4 and CD8 T cell responses with a polyfunctional profile. Two gp140 booster immunizations induced very high levels (∼2 mg/ml) of gp140 binding antibodies in serum, with strong reactivity directed against the homologous (C.1086) V1V2, V2 HS, V3, and gp41 immunodominant (ID) proteins. However, the vaccine-induced antibody showed 10-fold (peak) and 32-fold (prechallenge) weaker binding to the challenge virus (SHIV1157ipd3N4) V1V2 and failed to bind to the challenge virus V2 HS due to a single amino acid change. Point mutations in the immunogen V2 HS to match the V2 HS in the challenge virus significantly diminished the binding of vaccine-elicited antibodies to membrane-anchored gp160. Both vaccines failed to protect from infection following repeated SHIV1157ipd3N4 intrarectal challenges. However, only the protein-boosted animals showed enhanced viral control. These results demonstrate that C.1086 gp140 protein immunizations administered following DNA/MVA vaccination do not significantly boost heterologous V1V2 and V2 HS responses and fail to enhance protection against heterologous SHIV challenge.IMPORTANCE HIV, the virus that causes AIDS, is responsible for millions of infections and deaths annually. Despite intense research for the past 25 years, there remains no safe and effective vaccine available. The significance of this work is in identifying the pros and cons of adding a protein boost to an already well-established DNA/MVA HIV vaccine that is currently being tested in the clinic. Characterizing the effects of the protein boost can allow researchers going forward to design vaccines that generate responses that will be more effective against HIV. Our results in rhesus macaques show that boosting with a specific HIV envelope protein does not significantly boost antibody responses that were identified as immune correlates of protection in a moderately successful RV144 HIV vaccine trial in humans and highlight the need for the development of improved HIV envelope immunogens.
Collapse
|
7
|
Affiliation(s)
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|
8
|
Optimizing the immunogenicity of HIV prime-boost DNA-MVA-rgp140/GLA vaccines in a phase II randomized factorial trial design. PLoS One 2018; 13:e0206838. [PMID: 30496299 PMCID: PMC6264478 DOI: 10.1371/journal.pone.0206838] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background We evaluated the safety and immunogenicity of (i) an intradermal HIV-DNA regimen given with/without intradermal electroporation (EP) as prime and (ii) the impact of boosting with modified vaccinia virus Ankara (HIV-MVA) administered with or without subtype C CN54rgp140 envelope protein adjuvanted with Glucopyranosyl Lipid A (GLA-AF) in volunteers from Tanzania and Mozambique. Methods Healthy HIV-uninfected adults (N = 191) were randomized twice; first to one of three HIV-DNA intradermal priming regimens by needle-free ZetaJet device at weeks 0, 4 and 12 (Group I: 2x0.1mL [3mg/mL], Group II: 2x0.1mL [3mg/mL] plus EP, Group III: 1x0.1mL [6mg/mL] plus EP). Second the same volunteers received 108 pfu HIV-MVA twice, alone or combined with CN54rgp140/GLA-AF, intramuscularly by syringe, 16 weeks apart. Additionally, 20 volunteers received saline placebo. Results Vaccinations and electroporation did not raise safety concerns. After the last vaccination, the overall IFN-γ ELISpot response rate to either Gag or Env was 97%. Intradermal electroporation significantly increased ELISpot response rates to HIV-DNA-specific Gag (66% group I vs. 86% group II, p = 0.026), but not to the HIV-MVA vaccine-specific Gag or Env peptide pools nor the magnitude of responses. Co-administration of rgp140/GLA-AF with HIV-MVA did not impact the frequency of binding antibody responses against subtype B gp160, C gp140 or E gp120 antigens (95%, 99%, 79%, respectively), but significantly enhanced the magnitude against subtype B gp160 (2700 versus 300, p<0.001) and subtype C gp140 (24300 versus 2700, p<0.001) Env protein. At relatively low titers, neutralizing antibody responses using the TZM-bl assay were more frequent in vaccinees given adjuvanted protein boost. Conclusion Intradermal electroporation increased DNA-induced Gag response rates but did not show an impact on Env-specific responses nor on the magnitude of responses. Co-administration of HIV-MVA with rgp140/GLA-AF significantly enhanced antibody responses.
Collapse
|
9
|
Transcriptomic signatures of NK cells suggest impaired responsiveness in HIV-1 infection and increased activity post-vaccination. Nat Commun 2018; 9:1212. [PMID: 29572470 PMCID: PMC5865158 DOI: 10.1038/s41467-018-03618-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells limit viral replication by direct recognition of infected cells, antibody-dependent cellular cytotoxicity (ADCC), and releasing cytokines. Although growing evidence supports NK cell antiviral immunity in HIV-1 infection, further knowledge of their response is necessary. Here we show that NK cells responding to models of direct cell recognition, ADCC, and cytokine activation have unique transcriptional fingerprints. Compared with healthy volunteers, individuals with chronic HIV-1 infection have higher expression of genes commonly associated with activation, and lower expression of genes associated with direct cell recognition and cytokine stimulation in their NK cells. By contrast, NK cell transcriptional profiles of individuals receiving a modified vaccinia Ankara (MVA) vectored HIV-1 vaccine show upregulation of genes associated with direct cell recognition. These findings demonstrate that targeted transcriptional profiling provides a sensitive assessment of NK cell activity, which helps understand how NK cells respond to viral infections and vaccination. Natural killer (NK) cells are important for eliminating cells under stress or infected by virus, and may have a function in anti-HIV immunity. Here the authors show that different NK-activating stimuli induce distinct transcriptional fingerprints in human NK cells that are analogous to changes caused by HIV vaccination or chronic infection.
Collapse
|
10
|
Viegas EO, Tembe N, Nilsson C, Meggi B, Maueia C, Augusto O, Stout R, Scarlatti G, Ferrari G, Earl PL, Wahren B, Andersson S, Robb ML, Osman N, Biberfeld G, Jani I, Sandström E, the TaMoVac Study Group. Intradermal HIV-1 DNA Immunization Using Needle-Free Zetajet Injection Followed by HIV-Modified Vaccinia Virus Ankara Vaccination Is Safe and Immunogenic in Mozambican Young Adults: A Phase I Randomized Controlled Trial. AIDS Res Hum Retroviruses 2018; 34:193-205. [PMID: 28969431 DOI: 10.1089/aid.2017.0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We assessed the safety and immunogenicity of HIV-DNA priming using Zetajet™, a needle-free device intradermally followed by intramuscular HIV-MVA boosts, in 24 healthy Mozambicans. Volunteers were randomized to receive three immunizations of 600 μg (n = 10; 2 × 0.1 ml) or 1,200 μg (n = 10; 2 × 0.2 ml) of HIV-DNA (3 mg/ml), followed by two boosts of 108 pfu HIV-MVA. Four subjects received placebo saline injections. Vaccines and injections were safe and well tolerated with no difference between the two priming groups. After three HIV-DNA immunizations, IFN-γ ELISpot responses to Gag were detected in 9/17 (53%) vaccinees, while none responded to Envelope (Env). After the first HIV-MVA, the overall response rate to Gag and/or Env increased to 14/15 (93%); 14/15 (93%) to Gag and 13/15 (87%) to Env. There were no significant differences between the immunization groups in frequency of response to Gag and Env or magnitude of Gag responses. Env responses were significantly higher in the higher dose group (median 420 vs. 157.5 SFC/million peripheral blood mononuclear cell, p = .014). HIV-specific antibodies to subtype C gp140 and subtype B gp160 were elicited in all vaccinees after the second HIV-MVA, without differences in titers between the groups. Neutralizing antibody responses were not detected. Two (13%) of 16 vaccinees, one in each of the priming groups, exhibited antibodies mediating antibody-dependent cellular cytotoxicity to CRF01_AE. In conclusion, HIV-DNA vaccine delivered intradermally in volumes of 0.1-0.2 ml using Zetajet was safe and well tolerated. Priming with the 1,200 μg dose of HIV-DNA generated higher magnitudes of ELISpot responses to Env.
Collapse
Affiliation(s)
- Edna Omar Viegas
- Instituto Nacional de Saúde, Maputo, Mozambique
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Eduardo Mondlane University, Maputo, Mozambique
| | - Nelson Tembe
- Instituto Nacional de Saúde, Maputo, Mozambique
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Eduardo Mondlane University, Maputo, Mozambique
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Public Health Agency of Sweden, Stockholm, Sweden
| | | | | | | | | | | | - Guido Ferrari
- Department of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Patricia L. Earl
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAD)/National Institutes of Health (NIH), Bethesda, Maryland
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sören Andersson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Merlin L. Robb
- The Military HIV Research Program, Walter Reed Army Institute of Research and The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | | | - Gunnel Biberfeld
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ilesh Jani
- Instituto Nacional de Saúde, Maputo, Mozambique
| | - Eric Sandström
- Department of Education and Clinical Research, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
11
|
HIV-1 gp120 and Modified Vaccinia Virus Ankara (MVA) gp140 Boost Immunogens Increase Immunogenicity of a DNA/MVA HIV-1 Vaccine. J Virol 2017; 91:JVI.01077-17. [PMID: 29021394 PMCID: PMC5709589 DOI: 10.1128/jvi.01077-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/07/2017] [Indexed: 11/20/2022] Open
Abstract
An important goal of human immunodeficiency virus (HIV) vaccine design is identification of strategies that elicit effective antiviral humoral immunity. One novel approach comprises priming with DNA and boosting with modified vaccinia virus Ankara (MVA) expressing HIV-1 Env on virus-like particles. In this study, we evaluated whether the addition of a gp120 protein in alum or MVA-expressed secreted gp140 (MVAgp140) could improve immunogenicity of a DNA prime-MVA boost vaccine. Five rhesus macaques per group received two DNA primes at weeks 0 and 8 followed by three MVA boosts (with or without additional protein or MVAgp140) at weeks 18, 26, and 40. Both boost immunogens enhanced the breadth of HIV-1 gp120 and V1V2 responses, antibody-dependent cellular cytotoxicity (ADCC), and low-titer tier 1B and tier 2 neutralizing antibody responses. However, there were differences in antibody kinetics, linear epitope specificity, and CD4 T cell responses between the groups. The gp120 protein boost elicited earlier and higher peak responses, whereas the MVAgp140 boost resulted in improved antibody durability and comparable peak responses after the final immunization. Linear V3 specific IgG responses were particularly enhanced by the gp120 boost, whereas the MVAgp140 boost also enhanced responses to linear C5 and C2.2 epitopes. Interestingly, gp120, but not the MVAgp140 boost, increased peak CD4+ T cell responses. Thus, both gp120 and MVAgp140 can augment potential protection of a DNA/MVA vaccine by enhancing gp120 and V1/V2 antibody responses, whereas potential protection by gp120, but not MVAgp140 boosts, may be further impacted by increased CD4+ T cell responses. IMPORTANCE Prior immune correlate analyses with humans and nonhuman primates revealed the importance of antibody responses in preventing HIV-1 infection. A DNA prime-modified vaccinia virus Ankara (MVA) boost vaccine has proven to be potent in eliciting antibody responses. Here we explore the ability of boosts with recombinant gp120 protein or MVA-expressed gp140 to enhance antibody responses elicited by the GOVX-B11 DNA prime-MVA boost vaccine. We found that both types of immunogen boosts enhanced potentially protective antibody responses, whereas the gp120 protein boosts also increased CD4+ T cell responses. Our data provide important information for HIV vaccine designs that aim for effective and balanced humoral and T cell responses.
Collapse
|
12
|
Okeke MI, Okoli AS, Diaz D, Offor C, Oludotun TG, Tryland M, Bøhn T, Moens U. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Viruses 2017; 9:v9110318. [PMID: 29109380 PMCID: PMC5707525 DOI: 10.3390/v9110318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.
Collapse
Affiliation(s)
- Malachy I Okeke
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Arinze S Okoli
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Diana Diaz
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| | - Collins Offor
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Taiwo G Oludotun
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Morten Tryland
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
- Artic Infection Biology, Department of Artic and Marine Biology, UIT-The Artic University of Norway, N-9037 Tromso, Norway.
| | - Thomas Bøhn
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| |
Collapse
|
13
|
C. Guardo A, Gómez CE, Díaz-Brito V, Pich J, Arnaiz JA, Perdiguero B, García-Arriaza J, González N, Sorzano COS, Jiménez L, Jiménez JL, Muñoz-Fernández MÁ, Gatell JM, Alcamí J, Esteban M, López Bernaldo de Quirós JC, García F, Plana M. Safety and vaccine-induced HIV-1 immune responses in healthy volunteers following a late MVA-B boost 4 years after the last immunization. PLoS One 2017; 12:e0186602. [PMID: 29065142 PMCID: PMC5655491 DOI: 10.1371/journal.pone.0186602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/10/2017] [Indexed: 11/18/2022] Open
Abstract
Background We have previously shown that an HIV vaccine regimen including three doses of HIV-modified vaccinia virus Ankara vector expressing HIV-1 antigens from clade B (MVA-B) was safe and elicited moderate and durable (1 year) T-cell and antibody responses in 75% and 95% of HIV-negative volunteers (n = 24), respectively (RISVAC02 study). Here, we describe the long-term durability of vaccine-induced responses and the safety and immunogenicity of an additional MVA-B boost. Methods 13 volunteers from the RISVAC02 trial were recruited to receive a fourth dose of MVA-B 4 years after the last immunization. End-points were safety, cellular and humoral immune responses to HIV-1 and vector antigens assessed by ELISPOT, intracellular cytokine staining (ICS) and ELISA performed before and 2, 4 and 12 weeks after receiving the boost. Results Volunteers reported 64 adverse events (AEs), although none was a vaccine-related serious AE. After 4 years from the 1st dose of the vaccine, only 2 volunteers maintained low HIV-specific T-cell responses. After the late MVA-B boost, a modest increase in IFN-γ T-cell responses, mainly directed against Env, was detected by ELISPOT in 5/13 (38%) volunteers. ICS confirmed similar results with 45% of volunteers showing that CD4+ T-cell responses were mainly directed against Env, whereas CD8+ T cell-responses were similarly distributed against Env, Gag and GPN. In terms of antibody responses, 23.1% of the vaccinees had detectable Env-specific binding antibodies 4 years after the last MVA-B immunization with a mean titer of 96.5. The late MVA-B boost significantly improved both the response rate (92.3%) and the magnitude of the systemic binding antibodies to gp120 (mean titer of 11460). HIV-1 neutralizing antibodies were also enhanced and detected in 77% of volunteers. Moreover, MVA vector-specific T cell and antibody responses were boosted in 80% and 100% of volunteers respectively. Conclusions One boost of MVA-B four years after receiving 3 doses of the same vaccine was safe, induced moderate increases in HIV-specific T cell responses in 38% of volunteers but significantly boosted the binding and neutralizing antibody responses to HIV-1 and to the MVA vector. Trial registration ClinicalTrials.gov NCT01923610.
Collapse
Affiliation(s)
- Alberto C. Guardo
- Immunopathology and Cellular Immunology, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | - Vicens Díaz-Brito
- Infectious Diseases Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Judit Pich
- Infectious Diseases Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Joan Albert Arnaiz
- Infectious Diseases Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | | | | | - Nuria González
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Laura Jiménez
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Jiménez
- Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Spanish HIV HGM Biobank, Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBERBBN), Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Spanish HIV HGM Biobank, Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBERBBN), Madrid, Spain
| | - José M Gatell
- Infectious Diseases Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - José Alcamí
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Juan Carlos López Bernaldo de Quirós
- Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Spanish HIV HGM Biobank, Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBERBBN), Madrid, Spain
| | - Felipe García
- Infectious Diseases Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Montserrat Plana
- Immunopathology and Cellular Immunology, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- * E-mail:
| | | |
Collapse
|
14
|
Chea LS, Amara RR. Immunogenicity and efficacy of DNA/MVA HIV vaccines in rhesus macaque models. Expert Rev Vaccines 2017; 16:973-985. [PMID: 28838267 DOI: 10.1080/14760584.2017.1371594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Despite 30 years of research on HIV, a vaccine to prevent infection and limit disease progression remains elusive. The RV144 trial showed moderate, but significant protection in humans and highlighted the contribution of antibody responses directed against HIV envelope as an important immune correlate for protection. Efforts to further build upon the progress include the use of a heterologous prime-boost regimen using DNA as the priming agent and the attenuated vaccinia virus, Modified Vaccinia Ankara (MVA), as a boosting vector for generating protective HIV-specific immunity. Areas covered: In this review, we summarize the immunogenicity of DNA/MVA vaccines in non-human primate models and describe the efficacy seen in SIV infection models. We discuss immunological correlates of protection determined by these studies and potential approaches for improving the protective immunity. Additionally, we describe the current progress of DNA/MVA vaccines in human trials. Expert commentary: Efforts over the past decade have provided the opportunity to better understand the dynamics of vaccine-induced immune responses and immune correlates of protection against HIV. Based on what we have learned, we outline multiple areas where the field will likely focus on in the next five years.
Collapse
Affiliation(s)
- Lynette Siv Chea
- a Emory Vaccine Center, Department of Microbiology and Immunology , Yerkes National Primate Research Center, Emory University , Atlanta , GA , USA
| | - Rama Rao Amara
- a Emory Vaccine Center, Department of Microbiology and Immunology , Yerkes National Primate Research Center, Emory University , Atlanta , GA , USA
| |
Collapse
|
15
|
Joachim A, Munseri PJ, Nilsson C, Bakari M, Aboud S, Lyamuya EF, Tecleab T, Liakina V, Scarlatti G, Robb ML, Earl PL, Moss B, Wahren B, Mhalu F, Ferrari G, Sandstrom E, Biberfeld G. Three-Year Durability of Immune Responses Induced by HIV-DNA and HIV-Modified Vaccinia Virus Ankara and Effect of a Late HIV-Modified Vaccinia Virus Ankara Boost in Tanzanian Volunteers. AIDS Res Hum Retroviruses 2017; 33:880-888. [PMID: 28027665 DOI: 10.1089/aid.2016.0251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We explored the duration of immune responses and the effect of a late third HIV-modified vaccinia virus Ankara (MVA) boost in HIV-DNA primed and HIV-MVA boosted Tanzanian volunteers. Twenty volunteers who had previously received three HIV-DNA and two HIV-MVA immunizations were given a third HIV-MVA immunization 3 years after the second HIV-MVA boost. At the time of the third HIV-MVA, 90% of the vaccinees had antibodies to HIV-1 subtype C gp140 (median titer 200) and 85% to subtype B gp160 (median titer 100). The majority of vaccinees had detectable antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, 70% against CRF01_AE virus-infected cells (median titer 239) and 84% against CRF01_AE gp120-coated cells (median titer 499). A high proportion (74%) of vaccinees had IFN-γ ELISpot responses, 63% to Gag and 42% to Env, 3 years after the second HIV-MVA boost. After the third HIV-MVA, there was an increase in Env-binding antibodies and ADCC-mediating antibodies relative to the response seen at the time of the third HIV-MVA vaccination, p < .0001 and p < .05, respectively. The frequency of IFN-γ ELISpot responses increased to 95% against Gag or Env and 90% to both Gag and Env, p = .064 and p = .002, respectively. In conclusion, the HIV-DNA prime/HIV-MVA boost regimen elicited potent antibody and cellular immune responses with remarkable durability, and a third HIV-MVA immunization significantly boosted both antibody and cellular immune responses relative to the levels detected at the time of the third HIV-MVA, but not to higher levels than after the second HIV-MVA.
Collapse
Affiliation(s)
- Agricola Joachim
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Patricia J. Munseri
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Charlotta Nilsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Eligius F. Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | | | - Valentina Liakina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Merlin L. Robb
- The Military HIV Research Program, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Patricia L. Earl
- National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Maryland
| | - Bernard Moss
- National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Maryland
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Mhalu
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Guido Ferrari
- Department of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Eric Sandstrom
- Venhälsan, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Gunnel Biberfeld
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
16
|
Stenler S, Lundin KE, Hansen L, Petkov S, Mozafari N, Isaguliants M, Blomberg P, Smith CIE, Goldenberg DM, Chang CH, Ljungberg K, Hinkula J, Wahren B. Immunization with HIV-1 envelope T20-encoding DNA vaccines elicits cross-clade neutralizing antibody responses. Hum Vaccin Immunother 2017; 13:2849-2858. [PMID: 28696158 PMCID: PMC5718786 DOI: 10.1080/21645515.2017.1338546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Genetic immunization is expected to induce the expression of antigens in a native form. The encoded peptide epitopes are presented on endogenous MHC molecules, mimicking antigen presentation during a viral infection. We have explored the potential of enfuvirtide (T20), a short HIV peptide with antiviral properties, to enhance immune response to HIV antigens. To generate an expression vector, the T20 sequence was cloned into a conventional plasmid, the novel minicircle construct, and a replicon plasmid. In addition, 3 conventional plasmids that express the envelope of HIV-1 subtypes A, B and C and contain T20 in their gp41 sequences were also tested. Results: All combinations induced HIV-specific antibodies and cellular responses. The addition of T20 as a peptide and as an expression cassette in the 3 DNA vectors enhanced antibody responses. The highest anti-HIV-1 Env titers were obtained by the replicon T20 construct. This demonstrates that besides its known antiviral activity, T20 promotes immune responses. We also confirm that the combination of slightly divergent antigens improves immune responses. Conclusions: The antiretroviral T20 HIV-1 sequence can be used as an immunogen to elicit binding and neutralizing antibodies against HIV-1. These, or similarly modified gp41 genes/peptides, can be used as priming or boosting components for induction of broadly neutralizing anti-HIV antibodies. Future comparative studies will reveal the optimal mode of T20 administration.
Collapse
Affiliation(s)
- S Stenler
- a Karolinska Cell Therapy Center , Karolinska University Hospital , Stockholm , Sweden
| | - K E Lundin
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - L Hansen
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - S Petkov
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - N Mozafari
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - M Isaguliants
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - P Blomberg
- a Karolinska Cell Therapy Center , Karolinska University Hospital , Stockholm , Sweden
| | - C I E Smith
- b Department of Laboratory Medicine, Clinical Research Center , Karolinska Institutet , Huddinge , Sweden
| | - D M Goldenberg
- d Immunomedics, Inc., Morris Plains , NJ , USA.,e IBC Pharmaceuticals, Inc., Morris Plains , NJ , USA
| | - C-H Chang
- d Immunomedics, Inc., Morris Plains , NJ , USA.,e IBC Pharmaceuticals, Inc., Morris Plains , NJ , USA
| | - K Ljungberg
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| | - J Hinkula
- f Department of Molecular Virology , Linköping University , Linköping , Sweden
| | - B Wahren
- c Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
17
|
Hinkula J, Petkov S, Ljungberg K, Hallengärd D, Bråve A, Isaguliants M, Falkeborn T, Sharma S, Liakina V, Robb M, Eller M, Moss B, Biberfeld G, Sandström E, Nilsson C, Markland K, Blomberg P, Wahren B. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV. Heliyon 2017; 3:e00339. [PMID: 28721397 PMCID: PMC5496381 DOI: 10.1016/j.heliyon.2017.e00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
Background In order to develop a more effective prophylactic HIV-1 vaccine it is important optimize the components, improve Envelope glycoprotein immunogenicity as well as to explore prime-boost immunization schedules. It is also valuable to include several HIV-1 subtype antigens representing the world-wide epidemic. Methods HIVIS-DNA plasmids which include Env genes of subtypes A, B and C together with Gag subtypes A and B and RTmut/Rev of subtype B were modified as follows: the Envelope sequences were shortened, codon optimized, provided with an FT4 sequence and an immunodominant region mutated. The reverse transcriptase (RT) gene was shortened to contain the most immunogenic N-terminal fragment and fused with an inactivated viral protease vPR gene. HIVISopt-DNA thus contains fewer plasmids but additional PR epitopes compared to the native HIVIS-DNA. DNA components were delivered intradermally to young Balb/c mice once, using a needle-free Biojector® immediately followed by dermal electroporation. Vaccinia-based MVA-CMDR boosts including Env gene E and Gag-RT genes A were delivered intramuscularly by needle, once or twice. Results Both HIVIS-DNA and HIVISopt-DNA primed humoral and cell mediated responses well. When boosted with heterologous MVA-CMDR (subtypes A and E) virus inhibitory neutralizing antibodies were obtained to HIV-1 subtypes A, B, C and AE. Both plasmid compositions boosted with MVA-CMDR generated HIV-1 specific cellular responses directed against HIV-1 Env, Gag and Pol, as measured by IFNγ ELISpot. It was shown that DNA priming augmented the vector MVA immunological boosting effects, the HIVISopt-DNA with a trend to improved (Env) neutralization, the HIVIS-DNA with a trend to better (Gag) cell mediated immune reponses. Conclusions HIVIS-DNA was modified to obtain HIVISopt-DNA that had fewer plasmids, and additional epitopes. Even with one DNA prime followed by two MVA-CMDR boosts, humoral and cell-mediated immune responses were readily induced by priming with either DNA construct composition. Priming by HIV-DNA augmented neutralizing antibody responses revealed by boosting with the vaccinia-based heterologous sequences. Cellular and antibody responses covered selected strains representing HIV-1 subtypes A, B, C and CRF01_AE. We assume this is related to the inclusion of heterologous full genes in the vaccine schedule.
Collapse
Affiliation(s)
- J Hinkula
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden.,Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - S Petkov
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Ljungberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - D Hallengärd
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - A Bråve
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - M Isaguliants
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - T Falkeborn
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - S Sharma
- Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
| | - V Liakina
- Faculty of Medicine, Vilnius University 2, 08661 Vilnius, Lithuania
| | - M Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - M Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 20892 MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, 20892 MD, USA
| | - B Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - G Biberfeld
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - E Sandström
- Department of South Hospital, Karolinska Institutet, 11883 Stockholm, Sweden
| | - C Nilsson
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - K Markland
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - P Blomberg
- Clinical Research Center and Vecura, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - B Wahren
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
18
|
Abdoli A, Radmehr N, Bolhassani A, Eidi A, Mehrbod P, Motevalli F, Kianmehr Z, Chiani M, Mahdavi M, Yazdani S, Ardestani MS, Kandi MR, Aghasadeghi MR. Conjugated anionic PEG-citrate G2 dendrimer with multi-epitopic HIV-1 vaccine candidate enhance the cellular immune responses in mice. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1762-1768. [PMID: 28278580 DOI: 10.1080/21691401.2017.1290642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multi-epitope vaccines might cause immunity against multiple antigenic targets. Four immunodominant epitopes of HIV-1 genome were used to construct a polytope vaccine, formulated by dendrimer. Two regimens of polytopes mixture with dendrimer were utilized to immunize BALB/c mice. Adjuvants were also used to boost immune responses. The conjugated polytope could arouse significant cellular immune responses (P < 0.05) and Th1 response showed higher intensity compared to Th2 (P < 0.05). Our study depicted that conjugated dendrimer with multi-epitopic rHIVtop4 would efficiently induce cell-mediated immune responses and might be considered as promising delivery system for vaccines formulation.
Collapse
Affiliation(s)
- Asghar Abdoli
- a Hepatitis and AIDS Department , Pasteur Institute of Iran , Tehran , Iran
| | - Nina Radmehr
- b Faculty of Basic Sciences , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Azam Bolhassani
- a Hepatitis and AIDS Department , Pasteur Institute of Iran , Tehran , Iran
| | - Akram Eidi
- b Faculty of Basic Sciences , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Parvaneh Mehrbod
- c Influenza and Other Respiratory Viruses Department , Pasteur Institute of Iran , Tehran , Iran
| | - Fatemeh Motevalli
- a Hepatitis and AIDS Department , Pasteur Institute of Iran , Tehran , Iran
| | - Zahra Kianmehr
- d Immunoregulation Research Centre , Shahed University , Tehran , Iran
| | - Mohsen Chiani
- e Department of Pilot Biotechnology , Pasteur Institute of Iran , Tehran , Iran
| | - Mehdi Mahdavi
- f Department of Immunology , Pasteur Institute of Iran , Tehran , Iran
| | - Shaghayegh Yazdani
- g Department of Virology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Mehdi Shafiee Ardestani
- h Department of Radiopharmacy, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Kandi
- i Department of Life Science Engineering, Faculty of New Sciences and Technologies , University of Tehran
| | | |
Collapse
|
19
|
Joachim A, Bauer A, Joseph S, Geldmacher C, Munseri PJ, Aboud S, Missanga M, Mann P, Wahren B, Ferrari G, Polonis VR, Robb ML, Weber J, Tatoud R, Maboko L, Hoelscher M, Lyamuya EF, Biberfeld G, Sandström E, Kroidl A, Bakari M, Nilsson C, McCormack S. Boosting with Subtype C CN54rgp140 Protein Adjuvanted with Glucopyranosyl Lipid Adjuvant after Priming with HIV-DNA and HIV-MVA Is Safe and Enhances Immune Responses: A Phase I Trial. PLoS One 2016; 11:e0155702. [PMID: 27192151 PMCID: PMC4871571 DOI: 10.1371/journal.pone.0155702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/02/2016] [Indexed: 12/18/2022] Open
Abstract
Background A vaccine against HIV is widely considered the most effective and sustainable way of reducing new infections. We evaluated the safety and impact of boosting with subtype C CN54rgp140 envelope protein adjuvanted in glucopyranosyl lipid adjuvant (GLA-AF) in Tanzanian volunteers previously given three immunizations with HIV-DNA followed by two immunizations with recombinant modified vaccinia virus Ankara (HIV-MVA). Methods Forty volunteers (35 vaccinees and five placebo recipients) were given two CN54rgp140/GLA-AF immunizations 30–71 weeks after the last HIV-MVA vaccination. These immunizations were delivered intramuscularly four weeks apart. Results The vaccine was safe and well tolerated except for one episode of asymptomatic hypoglycaemia that was classified as severe adverse event. Two weeks after the second HIV-MVA vaccination 34 (97%) of the 35 previously vaccinated developed Env-specific binding antibodies, and 79% and 84% displayed IFN-γ ELISpot responses to Gag and Env, respectively. Binding antibodies to subtype C Env (included in HIV-DNA and protein boost), subtype B Env (included only in HIV-DNA) and CRF01_AE Env (included only in HIV-MVA) were significantly boosted by the CN54rgp140/GLA-AF immunizations. Functional antibodies detected using an infectious molecular clone virus/peripheral blood mononuclear cell neutralization assay, a pseudovirus/TZM-bl neutralization assay or by assays for antibody-dependent cellular cytotoxicity (ADCC) were not significantly boosted. In contrast, T-cell proliferative responses to subtype B MN antigen and IFN-γ ELISpot responses to Env peptides were significantly enhanced. Four volunteers not primed with HIV-DNA and HIV-MVA before the CN54rgp140/GLA-AF immunizations mounted an antibody response, while cell-mediated responses were rare. After the two Env subtype C protein immunizations, a trend towards higher median subtype C Env binding antibody titers was found in vaccinees who had received HIV-DNA and HIV-MVA prior to the two Env protein immunizations as compared to unprimed vaccinees (p = 0.07). Conclusion We report excellent tolerability, enhanced binding antibody responses and Env-specific cell-mediated immune responses but no ADCC antibody increase after two immunizations with a subtype C rgp140 protein adjuvanted in GLA-AF in healthy volunteers previously immunized with HIV-DNA and HIV-MVA. Trial Registration International Clinical Trials Registry PACTR2010050002122368
Collapse
Affiliation(s)
- Agricola Joachim
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: ;
| | - Asli Bauer
- National Institute for Medical Research-Mbeya, Medical Research Center, Mbeya, Tanzania
- Department of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Sarah Joseph
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| | - Christof Geldmacher
- Department of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Patricia J. Munseri
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Marco Missanga
- National Institute for Medical Research-Mbeya, Medical Research Center, Mbeya, Tanzania
| | - Philipp Mann
- National Institute for Medical Research-Mbeya, Medical Research Center, Mbeya, Tanzania
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Guido Ferrari
- Department of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Victoria R. Polonis
- The Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- The Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- The Military HIV Research Program, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | | | | | - Leonard Maboko
- National Institute for Medical Research-Mbeya, Medical Research Center, Mbeya, Tanzania
| | - Michael Hoelscher
- National Institute for Medical Research-Mbeya, Medical Research Center, Mbeya, Tanzania
- Department of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Eligius F. Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Gunnel Biberfeld
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Sandström
- Venhälsan, Karolinska Insitutet at Södersjukhuset, Stockholm, Sweden
| | - Arne Kroidl
- National Institute for Medical Research-Mbeya, Medical Research Center, Mbeya, Tanzania
- Department of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Charlotta Nilsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- The Public Health Agency of Sweden, Solna, Sweden
- Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Sheena McCormack
- Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
| |
Collapse
|
20
|
Klein N, Palma P, Luzuriaga K, Pahwa S, Nastouli E, Gibb DM, Rojo P, Borkowsky W, Bernardi S, Zangari P, Calvez V, Compagnucci A, Wahren B, Foster C, Munoz-Fernández MÁ, De Rossi A, Ananworanich J, Pillay D, Giaquinto C, Rossi P. Early antiretroviral therapy in children perinatally infected with HIV: a unique opportunity to implement immunotherapeutic approaches to prolong viral remission. THE LANCET. INFECTIOUS DISEASES 2015; 15:1108-1114. [PMID: 26187030 DOI: 10.1016/s1473-3099(15)00052-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 02/02/2023]
Abstract
From the use of antiretroviral therapy to prevent mother-to-child transmission to the possibility of HIV cure hinted at by the Mississippi baby experience, paediatric HIV infection has been pivotal to our understanding of HIV pathogenesis and management. Daily medication and indefinite antiretroviral therapy is recommended for children infected with HIV. Maintenance of life-long adherence is difficult and the incidence of triple-class virological failure after initiation of antiretroviral therapy increases with time. This challenge shows the urgent need to define novel strategies to provide long-term viral suppression that will allow safe interruption of antiretroviral therapy without viral rebound and any associated complications. HIV-infected babies treated within a few days of birth have a unique combination of a very small pool of integrated viruses, a very high proportion of relatively HIV resistant naive T cells, and an unparalleled capacity to regenerate an immune repertoire. These features make this group the optimum model population to investigate the potential efficacy of immune-based therapies. If successful, these investigations could change the way we manage HIV infection.
Collapse
Affiliation(s)
- Nigel Klein
- Institute of Child Health, University College London, London, UK.
| | - Paolo Palma
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School Worcester, MA, USA
| | - Savita Pahwa
- Miami Center for AIDS Research Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Eleni Nastouli
- Department of Virology, University College London, London, UK
| | - Diane M Gibb
- Medical Research Council Clinical Trials Unit, London, UK
| | - Pablo Rojo
- Department of Pediatrics, Hospital 12 de Octubre, Madrid, Spain
| | | | - Stefania Bernardi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Paola Zangari
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Vincent Calvez
- Pierre et Marie Curie University and Pitié-Salpêtrière Hospital, Paris, France
| | - Alexandra Compagnucci
- Institut National de la Santé et de la Recherche Médicale SC10-US019 Clinical Trials and Infectious Diseases, Villejuif, Paris, France
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Foster
- Imperial College Healthcare National Health Service Trust, London, UK
| | | | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, and Istituto Oncologico Veneto, Padova, Italy
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research and Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, USA
| | - Deenan Pillay
- Africa Centre, Mtubatuba, KwaZulu Natal, South Africa
| | - Carlo Giaquinto
- Department of Women's and Children's Health, University of Padova, and Penta Foundation, Padova, Italy
| | - Paolo Rossi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy.
| |
Collapse
|
21
|
Nilsson C, Hejdeman B, Godoy-Ramirez K, Tecleab T, Scarlatti G, Bråve A, Earl PL, Stout RR, Robb ML, Shattock RJ, Biberfeld G, Sandström E, Wahren B. HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial. PLoS One 2015; 10:e0131748. [PMID: 26121679 PMCID: PMC4486388 DOI: 10.1371/journal.pone.0131748] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/04/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers. METHODS HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA. RESULTS The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients. CONCLUSION Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use. TRIAL REGISTRATION International Standard Randomised Controlled Trial Number (ISRCTN) 60284968.
Collapse
Affiliation(s)
- Charlotta Nilsson
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| | - Bo Hejdeman
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | | | - Teghesti Tecleab
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and infectious diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andreas Bråve
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Patricia L. Earl
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, United States of America
| | | | - Merlin L. Robb
- Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Robin J. Shattock
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, United Kingdom
| | - Gunnel Biberfeld
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Sandström
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Comparable Antigenicity and Immunogenicity of Oligomeric Forms of a Novel, Acute HIV-1 Subtype C gp145 Envelope for Use in Preclinical and Clinical Vaccine Research. J Virol 2015; 89:7478-93. [PMID: 25972551 DOI: 10.1128/jvi.00412-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Eliciting broadly reactive functional antibodies remains a challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development that is complicated by variations in envelope (Env) subtype and structure. The majority of new global HIV-1 infections are subtype C, and novel antigenic properties have been described for subtype C Env proteins. Thus, an HIV-1 subtype C Env protein (CO6980v0c22) from an infected person in the acute phase (Fiebig stage I/II) was developed as a research reagent and candidate immunogen. The gp145 envelope is a novel immunogen with a fully intact membrane-proximal external region (MPER), extended by a polylysine tail. Soluble gp145 was enriched for trimers that yielded the expected "fan blade" motifs when visualized by cryoelectron microscopy. CO6980v0c22 gp145 reacts with the 4E10, PG9, PG16, and VRC01 HIV-1 neutralizing monoclonal antibodies (MAbs), as well as the V1/V2-specific PGT121, 697, 2158, and 2297 MAbs. Different gp145 oligomers were tested for immunogenicity in rabbits, and purified dimers, trimers, and larger multimers elicited similar levels of cross-subtype binding and neutralizing antibodies to tier 1 and some tier 2 viruses. Immunized rabbit sera did not neutralize the highly resistant CO6980v0c22 pseudovirus but did inhibit the homologous infectious molecular clone in a peripheral blood mononuclear cell (PBMC) assay. This Env is currently in good manufacturing practice (GMP) production to be made available for use as a clinical research tool and further evaluation as a candidate vaccine. IMPORTANCE At present, the product pipeline for HIV vaccines is insufficient and is limited by inadequate capacity to produce large quantities of vaccine to standards required for human clinical trials. Such products are required to evaluate critical questions of vaccine formulation, route, dosing, and schedule, as well as to establish vaccine efficacy. The gp145 Env protein presented in this study forms physical trimers, binds to many of the well-characterized broad neutralizing MAbs that target conserved Env epitopes, and induce cross-subtype neutralizing antibodies as measured in both cell line and primary cell assays. This subtype C Env gp145 protein is currently undergoing good manufacturing practice production for use as a reagent for preclinical studies and for human clinical research. This product will serve as a reagent for comparative studies and may represent a next-generation candidate HIV immunogen.
Collapse
|
23
|
|
24
|
Priming with a simplified intradermal HIV-1 DNA vaccine regimen followed by boosting with recombinant HIV-1 MVA vaccine is safe and immunogenic: a phase IIa randomized clinical trial. PLoS One 2015; 10:e0119629. [PMID: 25875843 PMCID: PMC4398367 DOI: 10.1371/journal.pone.0119629] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
Background Intradermal priming with HIV-1 DNA plasmids followed by HIV-1MVA boosting induces strong and broad cellular and humoral immune responses. In our previous HIVIS-03 trial, we used 5 injections with 2 pools of HIV-DNA at separate sites for each priming immunization. The present study explores whether HIV-DNA priming can be simplified by reducing the number of DNA injections and administration of combined versus separated plasmid pools. Methods In this phase IIa, randomized trial, priming was performed using 5 injections of HIV-DNA, 1000 μg total dose, (3 Env and 2 Gag encoding plasmids) compared to two “simplified” regimens of 2 injections of HIV-DNA, 600 μg total dose, of Env- and Gag-encoding plasmid pools with each pool either administered separately or combined. HIV-DNA immunizations were given intradermally at weeks 0, 4, and 12. Boosting was performed intramuscularly with 108 pfu HIV-MVA at weeks 30 and 46. Results 129 healthy Tanzanian participants were enrolled. There were no differences in adverse events between the groups. The proportion of IFN-γ ELISpot responders to Gag and/or Env peptides after the second HIV-MVA boost did not differ significantly between the groups primed with 2 injections of combined HIV-DNA pools, 2 injections with separated pools, and 5 injections with separated pools (90%, 97% and 97%). There were no significant differences in the magnitude of Gag and/or Env IFN-γ ELISpot responses, in CD4+ and CD8+ T cell responses measured as IFN-γ/IL-2 production by intracellular cytokine staining (ICS) or in response rates and median titers for binding antibodies to Env gp160 between study groups. Conclusions A simplified intradermal vaccination regimen with 2 injections of a total of 600 μg with combined HIV-DNA plasmids primed cellular responses as efficiently as the standard regimen of 5 injections of a total of 1000 μg with separated plasmid pools after boosting twice with HIV-MVA. Trial Registration World Health Organization International Clinical Trials Registry Platform PACTR2010050002122368
Collapse
|
25
|
Joachim A, Nilsson C, Aboud S, Bakari M, Lyamuya EF, Robb ML, Marovich MA, Earl P, Moss B, Ochsenbauer C, Wahren B, Mhalu F, Sandström E, Biberfeld G, Ferrari G, Polonis VR. Potent functional antibody responses elicited by HIV-I DNA priming and boosting with heterologous HIV-1 recombinant MVA in healthy Tanzanian adults. PLoS One 2015; 10:e0118486. [PMID: 25874723 PMCID: PMC4396991 DOI: 10.1371/journal.pone.0118486] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 01/18/2015] [Indexed: 12/19/2022] Open
Abstract
Vaccine-induced HIV antibodies were evaluated in serum samples collected from healthy Tanzanian volunteers participating in a phase I/II placebo-controlled double blind trial using multi-clade, multigene HIV-DNA priming and recombinant modified vaccinia Ankara (HIV-MVA) virus boosting (HIVIS03). The HIV-DNA vaccine contained plasmids expressing HIV-1 gp160 subtypes A, B, C, Rev B, Gag A, B and RTmut B, and the recombinant HIV-MVA boost expressed CRF01_AE HIV-1 Env subtype E and Gag-Pol subtype A. While no neutralizing antibodies were detected using pseudoviruses in the TZM-bl cell assay, this prime-boost vaccination induced neutralizing antibodies in 83% of HIVIS03 vaccinees when a peripheral blood mononuclear cell (PBMC) assay using luciferase reporter-infectious molecular clones (LucR-IMC) was employed. The serum neutralizing activity was significantly (but not completely) reduced upon depletion of natural killer (NK) cells from PBMC (p=0.006), indicating a role for antibody-mediated Fcγ-receptor function. High levels of antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies against CRF01_AE and/or subtype B were subsequently demonstrated in 97% of the sera of vaccinees. The magnitude of ADCC-mediating antibodies against CM235 CRF01_AE IMC-infected cells correlated with neutralizing antibodies against CM235 in the IMC/PBMC assay. In conclusion, HIV-DNA priming, followed by two HIV-MVA boosts elicited potent ADCC responses in a high proportion of Tanzanian vaccinees. Our findings highlight the potential of HIV-DNA prime HIV-MVA boost vaccines for induction of functional antibody responses and suggest this vaccine regimen and ADCC studies as potentially important new avenues in HIV vaccine development.
Collapse
Affiliation(s)
- Agricola Joachim
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Charlotta Nilsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Muhammad Bakari
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eligius F. Lyamuya
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Merlin L. Robb
- The Military HIV Research Program, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Mary A. Marovich
- The Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Patricia Earl
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard Moss
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Mhalu
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eric Sandström
- Venhälsan, Karolinska Institutet at Södersjukhuset, Stockholm, Sweden
| | - Gunnel Biberfeld
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Victoria R. Polonis
- The Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
26
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
27
|
Abstract
This special issue is focused on DNA vaccines, marking the two decades since the first demonstration of pre-clinical protection was published in Science (Ulmer et al.; Heterologous protection against influenza by injection of DNA encoding a viral protein. 1993). This introductory article provides an overview of the field and highlights the observations of the articles in this special issue while placing them in the context of other recent publications.
Collapse
|
28
|
Immunotherapy with an HIV-DNA Vaccine in Children and Adults. Vaccines (Basel) 2014; 2:563-80. [PMID: 26344746 PMCID: PMC4494215 DOI: 10.3390/vaccines2030563] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 11/17/2022] Open
Abstract
Therapeutic HIV immunization is intended to induce new HIV-specific cellular immune responses and to reduce viral load, possibly permitting extended periods without antiretroviral drugs. A multigene, multi-subtype A, B, C HIV-DNA vaccine (HIVIS) has been used in clinical trials in both children and adults with the aim of improving and broadening the infected individuals' immune responses. Despite the different country locations, different regimens and the necessary variations in assays performed, this is, to our knowledge, the first attempt to compare children's and adults' responses to a particular HIV vaccine. Ten vertically HIV-infected children aged 4-16 years were immunized during antiretroviral therapy (ART). Another ten children were blindly recruited as controls. Both groups continued their antiretroviral treatment during and after vaccinations. Twelve chronically HIV-infected adults were vaccinated, followed by repeated structured therapy interruptions (STI) of their antiretroviral treatment. The adult group included four controls, receiving placebo vaccinations. The HIV-DNA vaccine was generally well tolerated, and no serious adverse events were registered in any group. In the HIV-infected children, an increased specific immune response to Gag and RT proteins was detected by antigen-specific lymphoproliferation. Moreover, the frequency of HIV-specific CD8+ T-cell lymphocytes releasing perforin was significantly higher in the vaccinees than the controls. In the HIV-infected adults, increased CD8+ T-cell responses to Gag, RT and viral protease peptides were detected. No augmentation of HIV-specific lymphoproliferative responses were detected in adults after vaccination. In conclusion, the HIV-DNA vaccine can elicit new HIV-specific cellular immune responses, particularly to Gag antigens, in both HIV-infected children and adults. Vaccinated children mounted transient new HIV-specific immune responses, including both CD4+ T-cell lymphoproliferation and late CD8+ T-cell responses. In the adult cohort, primarily CD8+ T-cell responses related to MHC class I alleles were noted. However, no clinical benefits with respect to viral load reduction were ascribable to the vaccinations alone. No severe adverse effects related to the vaccine were found in either cohort, and no virological failures or drug resistances were detected.
Collapse
|
29
|
Iyer SS, Amara RR. DNA/MVA Vaccines for HIV/AIDS. Vaccines (Basel) 2014; 2:160-78. [PMID: 26344473 PMCID: PMC4494194 DOI: 10.3390/vaccines2010160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 11/16/2022] Open
Abstract
Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous "prime-boost" vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA)-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.
Collapse
Affiliation(s)
- Smita S Iyer
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Rama R Amara
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|