1
|
Cheedarla N, Sundaramurthi JC, Hemalatha B, Anangi B, Nesakumar M, Ashokkumar M, Vidya Vijayan K, Tripathy SP, Swaminathan S, Vaniambadi SK, Ramanathan DV, Hanna LE. Mapping of Neutralizing Antibody Epitopes on the Envelope of Viruses Obtained from Plasma Samples Exhibiting Broad Cross-Clade Neutralization Potential Against HIV-1. AIDS Res Hum Retroviruses 2019; 35:169-184. [PMID: 30328700 DOI: 10.1089/aid.2018.0224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several broadly neutralizing antibodies (bNAbs) that can target HIV strains with large degrees of variability have recently been identified. However, efforts to induce synthesis of such bNAbs that can protect against HIV infection have not met with much success. Identification of specific epitopes encoded in the HIV-1 envelope (Env) that can direct the host to synthesize bNAbs remains a challenge. In a previous study, we identified 12 antiretroviral therapy-naive HIV-1-infected individuals whose plasma exhibited broad cross-clade neutralization property against different clades of HIV-1. In this study, we sequenced the full-length HIV-1 gp160 from 11 of these individuals and analyzed the sequences to identify bNAb epitopes. We identified critical residues in the viral envelopes that contribute to the formation of conformational epitopes and possibly induce the production of bNAbs, using in silico methods. We found that many of the sequences had conserved glycans at positions N160 (10/11) and N332 (9/11), which are known to be critical for the binding of PG9/PG16-like and PGT128-like bNAbs, respectively. We also observed conservation of critical glycans at positions N234 and N276 critical for the interaction with CD4 binding site bNAbs in 8/11 and 11/11 sequences, respectively. We modeled the three-dimensional structure of the 11 HIV-1 envelopes and found that though each had structural differences, the critical residues were mostly present on the surface of the Env structures. The identified critical residues are proposed as candidates for further evaluation as bNAb epitopes.
Collapse
Affiliation(s)
- Narayanaiah Cheedarla
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | - Babu Hemalatha
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Brahmaiah Anangi
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Manohar Nesakumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Manickam Ashokkumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - K.K. Vidya Vijayan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | - Soumya Swaminathan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | | | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
2
|
Alampalli SV, Thomson MM, Sampathkumar R, Sivaraman K, U. K. J. AJ, Dhar C, D. Souza G, Berry N, Vyakarnam A. Deep sequencing of near full-length HIV-1 genomes from plasma identifies circulating subtype C and infrequent occurrence of AC recombinant form in Southern India. PLoS One 2017; 12:e0188603. [PMID: 29220350 PMCID: PMC5722309 DOI: 10.1371/journal.pone.0188603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/09/2017] [Indexed: 01/25/2023] Open
Abstract
India has the third largest number of HIV-1-infected individuals accounting for approximately 2.1 million people, with a predominance of circulating subtype C strains and a low prevalence of subtype A and A1C and BC recombinant forms, identified over the past two decades. Recovery of near full-length HIV-1 genomes from a plasma source coupled with advances in next generation sequencing (NGS) technologies and development of universal methods for amplifying whole genomes of HIV-1 circulating in a target geography or population provides the opportunity for a detailed analysis of HIV-1 strain identification, evolution and dynamics. Here we describe the development and implementation of approaches for HIV-1 NGS analysis in a southern Indian cohort. Plasma samples (n = 20) were obtained from HIV-1-confirmed individuals living in and around the city of Bengaluru. Near full-length genome recovery was obtained for 9 Indian HIV-1 patients, with recovery of full-length gag and env genes for 10 and 2 additional subjects, respectively. Phylogenetic analyses indicate the majority of sequences to be represented by subtype C viruses branching within a monophyletic clade, comprising viruses from India, Nepal, Myanmar and China and closely related to a southern African cluster, with a low prevalence of the A1C recombinant form also present. Development of algorithms for bespoke recovery and analysis at a local level will further aid clinical management of HIV-1 infected Indian subjects and delineate the progress of the HIV-1 pandemic in this and other geographical regions.
Collapse
Affiliation(s)
| | - Michael M. Thomson
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Majadahonda, Madrid, Spain
| | - Raghavan Sampathkumar
- Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bengaluru, India
| | - Karthi Sivaraman
- Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bengaluru, India
| | | | - Chirag Dhar
- Department of Infectious Diseases, St John’s Research Institute, Bengaluru, India
| | - George D. Souza
- Department of Pulmonary Medicine & Department of Infectious Diseases, St John’s Research Institute, Bengaluru, India
| | - Neil Berry
- Division of Virology, NIBSC, South Mimms, United Kingdom
| | - Annapurna Vyakarnam
- Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bengaluru, India
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- * E-mail: ,
| |
Collapse
|
3
|
Pandey SS, Cherian S, Thakar M, Paranjape RS. Short Communication: Phylogenetic and Molecular Characterization of Six Full-Length HIV-1 Genomes from India Reveals a Monophyletic Lineage of Indian Sub-Subtype A1. AIDS Res Hum Retroviruses 2016; 32:489-502. [PMID: 26756665 DOI: 10.1089/aid.2015.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although HIV-1 epidemic in India is mainly driven by subtype C, subtype A has been reported for over two decades. This is the first comprehensive analysis of sequences of HIV-1 subtype A from India, based on the near full-length genome sequences of six different HIV-1 subtype A Indian isolates along with available partial gene sequences from India and global sequences. The phylogenetic analyses revealed the convergence of all Indian whole-genome sequences and majority of the partial gene sequences to a single node with the sequences most closely related to African sub-subtype A1. The presence of the signature motifs consistent with those observed in subtype A and CTL epitopes characterized specifically for subtype A1 were observed among the study sequences. Deletion of LY amino acid of LYPXnL motif of p6gag and one amino acid in V3 loop have been observed among the study isolates, which have also been observed in a few sequences from East Africa. Overall, the results are indicative of a monophyletic lineage or founder effect of the Indian epidemic due to sub-subtype A1 and supportive of a possible migration of subtype A1 into India from East Africa.
Collapse
Affiliation(s)
| | - Sarah Cherian
- Bioinformatics Group, National Institute of Virology (ICMR), Pune, India
| | - Madhuri Thakar
- Department of Immunology, National AIDS Research Institute (ICMR), Pune, India
| | - Ramesh S. Paranjape
- Department of Immunology, National AIDS Research Institute (ICMR), Pune, India
| |
Collapse
|
4
|
Karade S, Pandey S, Gianchandani S, Kurle SN, Ghate M, Gaikwad NS, Rewari BB, Gangakhedkar RR. Near Full-Length Genomic Characterization of a Novel CRF 01_AE/C Recombinant from Western India. AIDS Res Hum Retroviruses 2015; 31:1269-73. [PMID: 26323027 DOI: 10.1089/aid.2015.0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV is known for its genetic variability across the globe. The HIV epidemic in India is primarily driven by subtype C, although sporadic circulating and unique recombinant forms are also reported from a few metropolitan cities in which genotyping facilities are available. Here we report a novel CRF01_AE/C recombinant from a multicenter study on the effectiveness of antiretroviral therapy (ART), 12 months after its initiation. Our subject is a 32-year-old heterosexual female, a native of Pune city in western India. Identification and analyses of recombination breakpoints using jpHMM@Gobics and SimPlot bootscanning revealed six recombination breakpoints, indicating insertion of the CRF01_AE genome at three points in the backbone of subtype C. Both subtype C and CRF01_AE are commonly seen in the population at risk of heterosexual HIV transmission, thereby providing an opportunity for cocirculation and recombination. The emergence of a novel recombinant of CRF01_AE/C is indicative of the increasing genetic diversity of the HIV epidemic in India.
Collapse
Affiliation(s)
- Santosh Karade
- HIV Drug Resistance Laboratory, National AIDS Research Institute, Pune, India
- Maharashtra University of Health Sciences, Nashik, India
| | - Sudhanshu Pandey
- HIV Drug Resistance Laboratory, National AIDS Research Institute, Pune, India
| | | | - Swarali N. Kurle
- HIV Drug Resistance Laboratory, National AIDS Research Institute, Pune, India
| | - Manisha Ghate
- Department of Clinical Sciences, National AIDS Research Institute, Pune, India
| | - Nitin S. Gaikwad
- Department of Tuberculosis and Chest Diseases, Yashwantrao Chavan Memorial Hospital, Pune, India
| | - Bharat B. Rewari
- National Programme Officer (ART), National AIDS Control Organization, New Delhi, India
| | | |
Collapse
|
5
|
Characterization of Novel HIV-1 Intersubtype CRF01_AE/C and A1/C Recombinants from India. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00849-15. [PMID: 26294622 PMCID: PMC4543500 DOI: 10.1128/genomea.00849-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report here three novel HIV-1 intersubtype recombinants from India. One among those is a recombinant between subtype C and CRF01_AE and another two between A1 and C. A recombinant virus with CRF01_AE is reported for the first time from India.
Collapse
|