1
|
Long X, Liu G, Liu X, Zhang C, Shi L, Zhu Z. Identifying the HIV-Resistance-Related Factors and Regulatory Network via Multi-Omics Analyses. Int J Mol Sci 2024; 25:11757. [PMID: 39519306 PMCID: PMC11546959 DOI: 10.3390/ijms252111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
For research on HIV/AIDS, it is important to elucidate the complex viral-host interaction, host dependency factors (HDFs), and restriction factors. However, the regulatory network of HIV-resistance-related factors remains not well understood. Therefore, we integrated four publicly available HIV-related transcriptome datasets, along with three datasets on HIV-infection-related DNA methylation, miRNA, and ChIP-seq, to predict the factors influencing HIV resistance and infection. Our approach involved differential analysis, functional annotation, and protein-protein interaction network analysis. Through comprehensive analyses, we identified 25 potential HIV-resistance-related genes (including shared EGF) and 24 HIV-infection-related hub genes (including shared JUN). Additionally, we pinpointed five key differentially methylated genes, five crucial differentially expressed microRNAs, and five significant pathways associated with HIV resistance. We mapped the potential regulatory pathways involving these HIV-resistance-related factors. Among the predicted factors, RHOA, RAD51, GATA1, IRF4, and CXCL8 have been validated as HDFs or restriction factors. The identified factors, such as JUN, EGF, and PLEK, are potential HDFs or restriction factors. This study uncovers the gene signatures and regulatory networks associated with HIV-1 resistance, suggesting potential targets for the development of new therapies against HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | | | - Lei Shi
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China; (X.L.); (G.L.); (X.L.); (C.Z.)
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China; (X.L.); (G.L.); (X.L.); (C.Z.)
| |
Collapse
|
2
|
Cabezas-Falcon S, Norbury AJ, Hulme-Jones J, Klebe S, Adamson P, Rudd PA, Mahalingam S, Ong LC, Alonso S, Gordon DL, Carr JM. Changes in complement alternative pathway components, factor B and factor H during dengue virus infection in the AG129 mouse. J Gen Virol 2021; 102:001547. [PMID: 33410734 PMCID: PMC8515863 DOI: 10.1099/jgv.0.001547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
The complement alternative pathway (AP) is tightly regulated and changes in two important AP components, factor B (FB) and factor H (FH) are linked to severe dengue in humans. Here, a mouse model of dengue was investigated to define the changes in FB and FH and assess the utility of this model to study the role of the AP in severe dengue. Throughout the period of viremia in the AG129 IFN signalling-deficient mouse, an increase in FB and a decrease in FH was observed following dengue virus (DENV) infection, with the former only seen in a model of more severe disease associated with antibody-dependent enhancement (ADE). Terminal disease was associated with a decrease in FB and FH, with greater changes during ADE, and accompanied by increased C3 degradation consistent with complement activation. In silico analysis of NFκΒ, signal transducer and activator of transcription (STAT) and IFN-driven FB and FH promoter elements to reflect the likely impact of the lack of IFN-responses in AG129 mice, demonstrated that these elements differed markedly between human and mouse, notably with mouse FH lacking NFκΒ and key IFN-stimulated response elements (ISRE), and FB with many more NFκΒ and STAT-responsive elements than human FB. Thus, the AG129 mouse offers utility in demonstrating changes in FB and FH that, similar to humans, are associated with severe disease, but lack predicted important human-specific and IFN-dependent responses of FB and FH to DENV-infection that are likely to regulate the subtleties of the overall AP response during dengue disease in humans.
Collapse
Affiliation(s)
- Sheila Cabezas-Falcon
- Microbiology and Infectious Diseases, Flinders University, Bedford Park, Adelaide 5042, South Australia
| | - Aidan J. Norbury
- Microbiology and Infectious Diseases, Flinders University, Bedford Park, Adelaide 5042, South Australia
| | - Jarrod Hulme-Jones
- Microbiology and Infectious Diseases, Flinders University, Bedford Park, Adelaide 5042, South Australia
| | - Sonja Klebe
- Anatomy and Pathology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, South Australia
- SA Pathology, Adelaide 5000, South Australia
| | - Penelope Adamson
- Microbiology and Infectious Diseases, Flinders University, Bedford Park, Adelaide 5042, South Australia
| | - Penny A. Rudd
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4215, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4215, Australia
| | - Li-Ching Ong
- Infectious Disease Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Sylvie Alonso
- Infectious Disease Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - David L. Gordon
- Microbiology and Infectious Diseases, Flinders University, Bedford Park, Adelaide 5042, South Australia
- SA Pathology, Adelaide 5000, South Australia
| | - Jillian M. Carr
- Microbiology and Infectious Diseases, Flinders University, Bedford Park, Adelaide 5042, South Australia
| |
Collapse
|
3
|
Xu S, Ma Y, Chen Y, Pan F. Role of Forkhead box O3a transcription factor in autoimmune diseases. Int Immunopharmacol 2021; 92:107338. [PMID: 33412391 DOI: 10.1016/j.intimp.2020.107338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Forkhead box O3a (FOXO3a) transcription factor, the most important member of Forkhead box O family, is closely related to cell proliferation, apoptosis, autophagy, oxidative stress and aging. The downregulation of FOXO3a has been verified to be associated with the poor prognosis, severer malignancy and chemoresistance in several human cancers. The activity of FOXO3a mainly regulated by phosphorylation of protein kinase B. FOXO3a plays a vital role in promoting the apoptosis of immune cells. FOXO3a could also modulate the activation, differentiation and function of T cells, regulate the proliferation and function of B cells, and mediate dendritic cells tolerance and immunity. FOXO3a accommodates the immune response through targeting nuclear factor kappa-B and FOXP3, as well as regulating the expression of cytokines. Besides, FOXO3a participates in intercellular interactions. FOXO3a inhibits dendritic cells from producing interleukin-6, which inhibits B-cell lymphoma-2 (BCL-2) and BCL-XL expression, thereby sparing resting T cells from apoptosis and increasing the survival of antigen-stimulated T cells. Recently, plentiful evidences further illustrated the significance of FOXO3a in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, myositis, multiple sclerosis, and systemic sclerosis. In this review, we focused on the biological function of FOXO3a and related signaling pathways regarding immune system, and summarized the potential role of FOXO3a in the pathogenesis, progress and therapeutic potential of autoimmune diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
4
|
Cabrera-Ortega AA, Feinberg D, Liang Y, Rossa C, Graves DT. The Role of Forkhead Box 1 (FOXO1) in the Immune System: Dendritic Cells, T Cells, B Cells, and Hematopoietic Stem Cells. Crit Rev Immunol 2019; 37:1-13. [PMID: 29431075 DOI: 10.1615/critrevimmunol.2017019636] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Forkhead box-O (FOXO) transcription factors have a fundamental role in the development and differentiation of immune cells. FOXO1 and FOXO3 are FOXO members that are structurally similar and bind to the same conserved consensus DNA sequences to induce transcription. FOXO1 has been studied in detail in the activation of dendritic cells (DCs), where it plays an important role through the regulation of target genes such as ICAM-1, CCR7, and the integrin αvβ3. FOXO1 is activated by bacteria challenge in DCs and promotes DC bacterial phagocytosis, migration, homing to lymph nodes, DC stimulation of CD4+ T cells and resting B cells, and antibody production. Deletion of FOXO1 in DCs enhances susceptibility to bacteria-induced periodontal disease. FOXO1 and FOXO3 maintain naive T cell quiescence and survival. FOXO1 and FOXO3 enhance the formation of regulatory T cells and inhibit the formation of T-helper 1 (Th1) and Th17 cells. FOXO1 promotes differentiation, proliferation, survival, immunoglobulin gene rearrangement, and class switching in B cells, but FOXO3 has little effect. Both FOXO1 and FOXO3 are important in the maintenance of hematopoietic stem cells by protecting them from oxidative stress. This review examines FOXO1/FOXO3 in the adaptive immune response, key target genes, and FOXO inhibition by the phosphoinositide 3-kinase/AKT pathway.
Collapse
Affiliation(s)
- Adriana Alicia Cabrera-Ortega
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Daniel Feinberg
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youde Liang
- Department of Stomatology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong, China
| | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|