1
|
Sebastião CS, Abecasis AB, Jandondo D, Sebastião JMK, Vigário J, Comandante F, Pingarilho M, Pocongo B, Cassinela E, Gonçalves F, Gomes P, Giovanetti M, Francisco NM, Sacomboio E, Brito M, Neto de Vasconcelos J, Morais J, Pimentel V. HIV-1 diversity and pre-treatment drug resistance in the era of integrase inhibitor among newly diagnosed ART-naïve adult patients in Luanda, Angola. Sci Rep 2024; 14:15893. [PMID: 38987263 PMCID: PMC11237101 DOI: 10.1038/s41598-024-66905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The surveillance of drug resistance in the HIV-1 naïve population remains critical to optimizing the effectiveness of antiretroviral therapy (ART), mainly in the era of integrase strand transfer inhibitor (INSTI) regimens. Currently, there is no data regarding resistance to INSTI in Angola since Dolutegravir-DTG was included in the first-line ART regimen. Herein, we investigated the HIV-1 genetic diversity and pretreatment drug resistance (PDR) profile against nucleoside/tide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and INSTIs, using a next-generation sequencing (NGS) approach with MinION, established to track and survey DRMs in Angola. This was a cross-sectional study comprising 48 newly HIV-diagnosed patients from Luanda, Angola, screened between March 2022 and May 2023. PR, RT, and IN fragments were sequenced for drug resistance and molecular transmission cluster analysis. A total of 45 out of the 48 plasma samples were successfully sequenced. Of these, 10/45 (22.2%) presented PDR to PIs/NRTIs/NNRTIs. Major mutations for NRTIs (2.2%), NNRTIs (20%), PIs (2.2%), and accessory mutations against INSTIs (13.3%) were detected. No major mutations against INSTIs were detected. M41L (2%) and I85V (2%) mutations were detected for NRTI and PI, respectively. K103N (7%), Y181C (7%), and K101E (7%) mutations were frequently observed in NNRTI. The L74M (9%) accessory mutation was frequently observed in the INSTI class. HIV-1 pure subtypes C (33%), F1 (17%), G (15%), A1 (10%), H (6%), and D (4%), CRF01_AG (4%) were observed, while about 10% were recombinant strains. About 31% of detected HIV-1C sequences were in clusters, suggesting small-scale local transmission chains. No major mutations against integrase inhibitors were detected, supporting the continued use of INSTI in the country. Further studies assessing the HIV-1 epidemiology in the era of INSTI-based ART regimens are needed in Angola.
Collapse
Affiliation(s)
- Cruz S Sebastião
- Centro de Investigação em Saúde de Angola (CISA), Caxito, Angola.
- Instituto Nacional de Investigação em Saúde (INIS), Luanda, Angola.
- Instituto de Ciências da Saúde (ICISA), Universidade Agostinho Neto (UAN), Luanda, Angola.
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| | - Ana B Abecasis
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | | | | | - João Vigário
- Instituto Nacional de Sangue (INS), Ministério da Saúde, Luanda, Angola
| | | | - Marta Pingarilho
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Bárbara Pocongo
- Instituto Nacional de Luta contra SIDA (INLS), Ministério da Saúde, Luanda, Angola
| | - Edson Cassinela
- Centro Nacional de Investigação Científica (CNIC), Luanda, Angola
| | - Fátima Gonçalves
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019, Lisbon, Portugal
| | - Perpétua Gomes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Sicence, Caparica, Almada, Portugal
| | - Marta Giovanetti
- Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico di Roma, Rome, Italy
| | | | - Euclides Sacomboio
- Instituto de Ciências da Saúde (ICISA), Universidade Agostinho Neto (UAN), Luanda, Angola
| | - Miguel Brito
- Centro de Investigação em Saúde de Angola (CISA), Caxito, Angola
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | | | - Joana Morais
- Instituto Nacional de Investigação em Saúde (INIS), Luanda, Angola
| | - Victor Pimentel
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| |
Collapse
|
2
|
Branda F, Giovanetti M, Sernicola L, Farcomeni S, Ciccozzi M, Borsetti A. Comprehensive Analysis of HIV-1 Integrase Resistance-Related Mutations in African Countries. Pathogens 2024; 13:102. [PMID: 38392840 PMCID: PMC10892843 DOI: 10.3390/pathogens13020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The growing emergence of non-nucleoside reverse transcriptase inhibitor (NNRTI) HIV drug resistance in sub-Saharan Africa (SSA) led to the World Health Organization (WHO) recommending, in 2018, a transition to dolutegravir (DTG) as a first-line antiretroviral therapy (ART) in SSA. The broad HIV-1 genetic diversity in SSA could shape DTG effectiveness and the pattern of drug resistance mutations (DRMs) in this region. This study evaluated HIV-1 integrase (IN) DRMs and conserved regions among published groups M, N, O, and P HIV-1 sequences spanning forty years of the HIV epidemic during the transition of DTG-based ART. Overall, we found low levels of integrase strand transfer inhibitor (INSTI)-DRMs (<1%) across HIV groups between the years 1983 and 2023; however, it was unexpected to detect DRMs at statistically significantly higher frequencies in pre-INSTI (1983-2007) than in the INSTI (2008-2023) era. The variability of accessory INSTI-DRMs depended on the HIV subtypes, with implications for susceptibility to DTG. Our findings provide new perspectives on the molecular epidemiology and drug resistance profiles of INSTIs in SSA, emphasizing the need for ongoing surveillance and customized treatment approaches to address the continent's varied HIV subtypes and changing resistance patterns.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (F.B.); (M.C.)
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, Brazil
| | - Leonardo Sernicola
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00161 Rome, Italy; (L.S.); (S.F.)
| | - Stefania Farcomeni
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00161 Rome, Italy; (L.S.); (S.F.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (F.B.); (M.C.)
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00161 Rome, Italy; (L.S.); (S.F.)
| |
Collapse
|
3
|
Kiros M, Tefera DA, Andualem H, Geteneh A, Tesfaye A, Woldemichael TS, Kidane E, Alemayehu DH, Maier M, Mihret A, Abegaz WE, Mulu A. Low level of HIV-1C integrase strand transfer inhibitor resistance mutations among recently diagnosed ART-naive Ethiopians. Sci Rep 2023; 13:6546. [PMID: 37085698 PMCID: PMC10121640 DOI: 10.1038/s41598-023-33850-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
With the widespread use of Integrase strand transfer inhibitors (INSTIs), surveillance of HIV-1 pretreatment drug resistance is critical in optimizing antiretroviral treatment efficacy. However, despite the introduction of these drugs, data concerning their resistance mutations (RMs) is still limited in Ethiopia. Thus, this study aimed to assess INSTI RMs and polymorphisms at the gene locus coding for Integrase (IN) among viral isolates from ART-naive HIV-1 infected Ethiopian population. This was a cross-sectional study involving isolation of HIV-1 from plasma of 49 newly diagnosed drug-naive HIV-1 infected individuals in Addis-Ababa during the period between June to December 2018. The IN region covering the first 263 codons of blood samples was amplified and sequenced using an in-house assay. INSTIs RMs were examined using calibrated population resistance tool version 8.0 from Stanford HIV drug resistance database while both REGA version 3 online HIV-1 subtyping tool and the jumping profile Hidden Markov Model from GOBICS were used to examine HIV-1 genetic diversity. Among the 49 study participants, 1 (1/49; 2%) harbored a major INSTIs RM (R263K). In addition, blood specimens from 14 (14/49; 28.5%) patients had accessory mutations. Among these, the M50I accessory mutation was observed in a highest frequency (13/49; 28.3%) followed by L74I (1/49; 2%), S119R (1/49; 2%), and S230N (1/49; 2%). Concerning HIV-1 subtype distribution, all the entire study subjects were detected to harbor HIV-1C strain as per the IN gene analysis. This study showed that the level of primary HIV-1 drug resistance to INSTIs is still low in Ethiopia reflecting the cumulative natural occurrence of these mutations in the absence of selective drug pressure and supports the use of INSTIs in the country. However, continues monitoring of drug resistance should be enhanced since the virus potentially develop resistance to this drug classes as time goes by.
Collapse
Affiliation(s)
- Mulugeta Kiros
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Aksum University, Aksum, Ethiopia.
| | | | - Henok Andualem
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Alene Geteneh
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | | | | | - Eleni Kidane
- The Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Melanie Maier
- Department Virology, Institute Medical Microbiology and Virology, Leipzig University, Leipzig, Germany
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Woldaregay Erku Abegaz
- Department of Microbiology, Parasitology, and Immunology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
4
|
Mikasi SG, Isaacs D, Chitongo R, Ikomey GM, Jacobs GB, Cloete R. Interaction analysis of statistically enriched mutations identified in Cameroon recombinant subtype CRF02_AG that can influence the development of Dolutegravir drug resistance mutations. BMC Infect Dis 2021; 21:379. [PMID: 33892628 PMCID: PMC8063366 DOI: 10.1186/s12879-021-06059-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/08/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The Integrase (IN) strand transfer inhibitor (INSTI), Dolutegravir (DTG), has been given the green light to form part of first-line combination antiretroviral therapy (cART) by the World Health Organization (WHO). DTG containing regimens have shown a high genetic barrier against HIV-1 isolates carrying specific resistance mutations when compared with other class of regimens. METHODS We evaluated the HIV-1 CRF02_AG IN gene sequences from Cameroon for the presence of resistance-associated mutations (RAMs) against INSTIs and naturally occurring polymorphisms (NOPs), using study sequences (n = 20) and (n = 287) sequences data derived from HIV Los Alamos National Laboratory database. The possible impact of NOPs on protein structure caused by HIV-1 CRF02_AG variations was addressed within the context of a 3D model of the HIV-1 IN complex and interaction analysis was performed using PyMol to validate DTG binding to the Wild type and seven mutant structures. RESULTS We observed 12.8% (37/287) sequences to contain RAMs, with only 1.0% (3/287) of the sequences having major INSTI RAMs: T66A, Q148H, R263K and N155H. Of these,11.8% (34/287) of the sequences contained five different IN accessory mutations; namely Q95K, T97A, G149A, E157Q and D232N. NOPs occurred at a frequency of 66% on the central core domain (CCD) position, 44% on the C-terminal domain (CTD) position and 35% of the N-terminal domain (NTD) position. The interaction analysis revealed that DTG bound to DNA, 2MG ions and DDE motif residues for T66A, T97A, Q148H, N155H and R263K comparable to the WT structure. Except for accessory mutant structure E157Q, only one MG contact was made with DTG, while DTG had no MG ion contacts and no DDE motif residue contacts for structure D232N. CONCLUSIONS Our analysis indicated that all RAM's that resulted in a change in the number of interactions with encompassing residues does not affect DTG binding, while accessory mutations E157Q and D232N could affect DTG binding leading to possible DTG resistance. However, further experimental validation is required to validate the in silico findings of our study.
Collapse
Affiliation(s)
- Sello Given Mikasi
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Darren Isaacs
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Rd, Bellville, P.O. Box X17, Cape Town, 7535, South Africa
| | - Rumbidzai Chitongo
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Rd, Bellville, P.O. Box X17, Cape Town, 7535, South Africa
| | - George Mondide Ikomey
- Centre for the Study and Control of Communicable Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Rd, Bellville, P.O. Box X17, Cape Town, 7535, South Africa.
| |
Collapse
|