1
|
Kaur A, Vaccari M. Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses 2024; 16:368. [PMID: 38543734 PMCID: PMC10974975 DOI: 10.3390/v16030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.
Collapse
Affiliation(s)
- Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Piepenbrink M, Oladunni F, Nogales A, Khalil AM, Fitzgerald T, Basu M, Fucile C, Topham DJ, Rosenberg AF, Martinez-Sobrido L, Kobie JJ. Highly Cross-Reactive and Protective Influenza A Virus H3N2 Hemagglutinin- and Neuraminidase-Specific Human Monoclonal Antibodies. Microbiol Spectr 2023; 11:e0472822. [PMID: 37318331 PMCID: PMC10433997 DOI: 10.1128/spectrum.04728-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/29/2023] [Indexed: 06/16/2023] Open
Abstract
Due to antigenic drift and shift of influenza A viruses (IAV) and the tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to new strains of seasonal IAV and is at risk from viruses with pandemic potential for which limited or no immunity may exist. The genetic drift of H3N2 IAV is specifically pronounced, resulting in two distinct clades since 2014. Here, we demonstrate that immunization with a seasonal inactivated influenza vaccine (IIV) results in increased levels of H3N2 IAV-specific serum antibodies against hemagglutinin (HA) and neuraminidase (NA). Detailed analysis of the H3N2 B cell response indicated expansion of H3N2-specific peripheral blood plasmablasts 7 days after IIV immunization which expressed monoclonal antibodies (MAbs) with broad and potent antiviral activity against many H3N2 IAV strains as well as prophylactic and therapeutic activity in mice. These H3N2-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results demonstrate that IIV-induced H3N2 human MAbs can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IAV H3N2-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development. IMPORTANCE Influenza A virus (IAV) infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets within the influenza virus hemagglutinin and neuraminidase proteins. We have demonstrated that seasonal immunization with inactivated influenza vaccine (IIV) stimulates H3N2-specific monoclonal antibodies in humans that are broad and potent in their neutralization of virus in vitro. These antibodies also provide protection from H3N2 IAV in a mouse model of infection. Furthermore, they persist in the bone marrow, where they are expressed by long-lived antibody-producing plasma cells. This significantly demonstrates that seasonal IIV can induce a subset of H3N2-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Michael Piepenbrink
- Heersink School of Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| | - Fatai Oladunni
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Ahmed M. Khalil
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Theresa Fitzgerald
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Madhubanti Basu
- Heersink School of Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher Fucile
- Heersink School of Medicine, Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David J. Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - Alexander F. Rosenberg
- Heersink School of Medicine, Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, USA
| | - James J. Kobie
- Heersink School of Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| |
Collapse
|