1
|
Frottin F, Espagne C, Traverso JA, Mauve C, Valot B, Lelarge-Trouverie C, Zivy M, Noctor G, Meinnel T, Giglione C. Cotranslational proteolysis dominates glutathione homeostasis to support proper growth and development. THE PLANT CELL 2009; 21:3296-314. [PMID: 19855051 PMCID: PMC2782297 DOI: 10.1105/tpc.109.069757] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/17/2009] [Accepted: 10/05/2009] [Indexed: 05/18/2023]
Abstract
The earliest proteolytic event affecting most proteins is the excision of the initiating Met (NME). This is an essential and ubiquitous cotranslational process tightly regulated in all eukaryotes. Currently, the effects of NME on unknown complex cellular networks and the ways in which its inhibition leads to developmental defects and cell growth arrest remain poorly understood. Here, we provide insight into the earliest molecular mechanisms associated with the inhibition of the NME process in Arabidopsis thaliana. We demonstrate that the developmental defects induced by NME inhibition are caused by an increase in cellular proteolytic activity, primarily induced by an increase in the number of proteins targeted for rapid degradation. This deregulation drives, through the increase of the free amino acids pool, a perturbation of the glutathione homeostasis, which corresponds to the earliest limiting, reversible step promoting the phenotype. We demonstrate that these effects are universally conserved and that the reestablishment of the appropriate glutathione status restores growth and proper development in various organisms. Finally, we describe a novel integrated model in which NME, protein N-alpha-acylation, proteolysis, and glutathione homeostasis operate in a sequentially regulated mechanism that directs both growth and development.
Collapse
Affiliation(s)
- Frédéric Frottin
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Unité Propre de Recherche2355, Protein Maturation, Cell Fate, and Therapeutics, F-91198 Gif-sur-Yvette cedex, France
| | - Christelle Espagne
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Unité Propre de Recherche2355, Protein Maturation, Cell Fate, and Therapeutics, F-91198 Gif-sur-Yvette cedex, France
| | - José A. Traverso
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Unité Propre de Recherche2355, Protein Maturation, Cell Fate, and Therapeutics, F-91198 Gif-sur-Yvette cedex, France
| | - Caroline Mauve
- Université Paris-Sud, Institut Fédératif de Recherche87, Institut de Biotechnologie des Plantes, Plateforme Métabolisme-Métabolome, F-91405 Orsay, France
- Centre National de la Recherche Scientifique, Institut Fédératif de Recherche87, Institut de Biotechnologie des Plantes, Plateforme Métabolisme-Métabolome, Unité Mixte de Recherche 8618, F-91405 Orsay, France
| | - Benoît Valot
- Université Paris-Sud, Plateforme de Protéomique, Institut Fédératif de Recherche87, Centre National de la Recherche Scientifique/Université Paris-Sud/Institut National de la Recherche Agronomique, F-91190 Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique, Plateforme de Protéomique, Institut Fédératif de Recherche87, F-91190 Gif-sur-Yvette, France
- Institut National de la Recherche Agronomique, Plateforme de Protéomique, Institut Fédératif de Recherche87, F-91190 Gif-sur-Yvette, France
| | - Caroline Lelarge-Trouverie
- Université Paris-Sud, Institut Fédératif de Recherche87, Institut de Biotechnologie des Plantes, Plateforme Métabolisme-Métabolome, F-91405 Orsay, France
- Centre National de la Recherche Scientifique, Institut Fédératif de Recherche87, Institut de Biotechnologie des Plantes, Plateforme Métabolisme-Métabolome, Unité Mixte de Recherche 8618, F-91405 Orsay, France
| | - Michel Zivy
- Université Paris-Sud, Plateforme de Protéomique, Institut Fédératif de Recherche87, Centre National de la Recherche Scientifique/Université Paris-Sud/Institut National de la Recherche Agronomique, F-91190 Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique, Plateforme de Protéomique, Institut Fédératif de Recherche87, F-91190 Gif-sur-Yvette, France
- Institut National de la Recherche Agronomique, Plateforme de Protéomique, Institut Fédératif de Recherche87, F-91190 Gif-sur-Yvette, France
| | - Graham Noctor
- Université Paris-Sud, Institut Fédératif de Recherche87, Institut de Biotechnologie des Plantes, Plateforme Métabolisme-Métabolome, F-91405 Orsay, France
- Centre National de la Recherche Scientifique, Institut Fédératif de Recherche87, Institut de Biotechnologie des Plantes, Plateforme Métabolisme-Métabolome, Unité Mixte de Recherche 8618, F-91405 Orsay, France
| | - Thierry Meinnel
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Unité Propre de Recherche2355, Protein Maturation, Cell Fate, and Therapeutics, F-91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Unité Propre de Recherche2355, Protein Maturation, Cell Fate, and Therapeutics, F-91198 Gif-sur-Yvette cedex, France
- Address correspondence to
| |
Collapse
|
2
|
Kemp M, Go YM, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 2008; 44:921-37. [PMID: 18155672 PMCID: PMC2587159 DOI: 10.1016/j.freeradbiomed.2007.11.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/28/2007] [Accepted: 11/14/2007] [Indexed: 01/18/2023]
Abstract
Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend on redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide, and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but nonequilibrium steady states, are largely independently regulated in different subcellular compartments, and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential, and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways, and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention.
Collapse
Affiliation(s)
- Melissa Kemp
- The Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta GA 30332
| | - Young-Mi Go
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322
| | - Dean P. Jones
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322
- Corresponding Author: Dr. Dean P. Jones, 205 Whitehead Research Center, Emory University, Atlanta, GA 30322, Phone: 404-727-5970; Fax; 404-712-2974; E-mail:
| |
Collapse
|
3
|
Grant MM, Mistry N, Lunec J, Griffiths HR. Dose-dependent modulation of the T cell proteome by ascorbic acid. Br J Nutr 2007; 97:19-26. [PMID: 17217556 DOI: 10.1017/s0007114507197592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To investigate the hypothesis that the micronutrient ascorbic acid can modulate the functional genome, T cells (CCRF-HSB2) were treated with ascorbic acid (up to 150 microM) for up to 24 h. Protein expression changes were assessed by two-dimensional electrophoresis. Forty-one protein spots which showed greater than two-fold expression changes were subject to identification by matrix-assisted laser desorption ionisation time of flight MS. The confirmed protein identifications were clustered into five groups; proteins were associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of phosphatidylinositol transfer protein (promotes intracellular signalling) within 5 min of ascorbic acid treatment was confirmed by Western blotting. Together, these observations suggest that ascorbic acid modulates the T cell proteome in a time- and dose-dependent manner and identify molecular targets for study following antioxidant supplementation in vivo.
Collapse
|