1
|
Petro TM, Esmael A, Pattee GL, Al-Sarmi F, Chiodo F, Agarkova IV, Dunigan DD, Van Etten JL. Expression of human superoxide dismutase (SOD) 1 G93A and chlorovirus ATCV-1 SOD increases the response of macrophages to inflammatory stimulants, including ATCV-1 major capsid protein glycans. Immunobiology 2025; 230:152881. [PMID: 39965330 DOI: 10.1016/j.imbio.2025.152881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
One cause of familial Amyotrophic Lateral Sclerosis (ALS) is a mutation in Super Oxide Dismutase 1 (SOD1) whereby amino acid 93 is alanine instead of glycine (SOD1-G93A). Transgenic mice expressing human SOD1-G93A pathogenic variant develop motor neuron disease (MND), similar to ALS. Humans with ALS and SOD1-G93A mice have elevated production of inflammatory cytokines, such as IL-6, which may promote MND. We previously showed that infection with the Chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1), which encodes a SOD1, accelerates onset of MND in these mice and induces macrophages to produce high levels of IL-6. We confirm here that ALS patients compared with healthy controls have significantly elevated levels of plasma IL-6 and Interferon-gamma (IFN-γ), but not IL-17. To determine if expression of ATCV-1 SOD1 or SOD1-G93A in mouse macrophages elevates expression of inflammatory cytokines, we transfected the RAW264.7 mouse macrophage cell line with plasmids encoding ATCV-1 SOD1, wild-type human SOD1, SOD1-G93A, or an empty vector. RAW264.7 cells stably expressing wtSOD1 or G93A-SOD1 were stimulated with poly I:C and Interferon-gamma, alone, or in combination to induce inflammatory factors, such as IL-6 and Nitric Oxide (NO), anti-inflammatory factors, such as IL-10, or activation of Interferon Stimulated Response Elements (ISRE) promoters. After stimulation, production of IL-6 and NO, but not IL-10 or ISRE promoter activity was significantly higher in RAW264.7 cells expressing SOD1-G93A compared with wt SOD1. Moreover, RAW264.7 cells expressing SOD1-G93A compared with wt SOD1 produced higher levels of IL-6 and NO in response to ATCV-1 glycoproteins. Finally, transfection of plasmid encoding ATCV-1 SOD1 into RAW264.7 cells significantly increased expression of inflammatory factors in responses to poly I:C and IFN-γ, primarily in an Interferon regulatory factor 3 (IRF3) dependent fashion. These data clearly show that expression of G93A-SOD1 or ATCV-1 SOD1 in macrophages significantly elevates expression of inflammatory factors following stimulations that mimic virus infection, viral components, or T cell cytokines, thereby suggesting one mechanism by which atypical SOD1 in macrophages can contribute to ALS-MND.
Collapse
Affiliation(s)
- Thomas M Petro
- Department of Oral Biology, University of Nebraska Medical Center, USA; Nebraska Center for Virology University of Nebraska Lincoln, Lincoln, Nebraska 68583, USA.
| | - Ahmed Esmael
- Nebraska Center for Virology University of Nebraska Lincoln, Lincoln, Nebraska 68583, USA; Benha University, College of Science, Egypt
| | - Gary L Pattee
- Bryan Health Physician Network, Lincoln, Nebraska, USA
| | - Fiyad Al-Sarmi
- Nebraska Center for Virology University of Nebraska Lincoln, Lincoln, Nebraska 68583, USA
| | - Fabrizio Chiodo
- Institute of Biomolecular Chemistry and Dept. of Agricultural Sciences, University of Napoli, Italy
| | - Irina V Agarkova
- Nebraska Center for Virology University of Nebraska Lincoln, Lincoln, Nebraska 68583, USA
| | - David D Dunigan
- Nebraska Center for Virology University of Nebraska Lincoln, Lincoln, Nebraska 68583, USA
| | - James L Van Etten
- Nebraska Center for Virology University of Nebraska Lincoln, Lincoln, Nebraska 68583, USA
| |
Collapse
|
2
|
Baek Y, Kim H, Lee D, Kim D, Jo E, Roh SH, Ha NC. Structural insights into the role of reduced cysteine residues in SOD1 amyloid filament formation. Proc Natl Acad Sci U S A 2025; 122:e2408582122. [PMID: 39874287 PMCID: PMC11804504 DOI: 10.1073/pnas.2408582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025] Open
Abstract
The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity. The C6A/C111A mutant SOD1 formed filaments more rapidly than the WT protein. The mutant structure had a unique paired-protofilament arrangement, with a smaller filament core than that of the single-protofilament structure observed in WT SOD1. Although the single-protofilament form developed more slowly, cross-seeding experiments demonstrated the predominance of single-protofilament morphology over paired protofilaments, regardless of the presence of the Cys6 and Cys111 mutations. These findings highlight the importance of the number of amino acid residues within the filament core in determining the energy requirements for assembly. Our study provides insights into ALS pathogenesis by elucidating the initiation and propagation of filament formation, which potentially leads to deleterious amyloid filaments.
Collapse
Affiliation(s)
- Yeongjin Baek
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Republic of Korea
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg69117, Germany
| | - Dukwon Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Doyeon Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Eunbyul Jo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
3
|
Wang LQ, Ma Y, Zhang MY, Yuan HY, Li XN, Xia W, Zhao K, Huang X, Chen J, Li D, Zou L, Wang Z, Le W, Liu C, Liang Y. Amyloid fibril structures and ferroptosis activation induced by ALS-causing SOD1 mutations. SCIENCE ADVANCES 2024; 10:eado8499. [PMID: 39475611 PMCID: PMC11524188 DOI: 10.1126/sciadv.ado8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
Over 200 genetic mutations in copper-zinc superoxide dismutase (SOD1) have been linked to amyotrophic lateral sclerosis (ALS). Among these, two ALS-causing mutants, histidine-46→arginine (H46R) and glycine-85→arginine (G85R), exhibit a decreased capacity to bind metal ions. Here, we report two cryo-electron microscopy structures of amyloid fibrils formed by H46R and G85R. These mutations lead to the formation of amyloid fibrils with unique structures distinct from those of the native fibril. The core of these fibrils features a serpentine arrangement with seven or eight β strands, secured by a hydrophobic cavity and a salt bridge between arginine-85 and aspartic acid-101 in the G85R fibril. We demonstrate that these mutant fibrils are notably more toxic and capable of promoting the aggregation of wild-type SOD1 more effectively, causing mitochondrial impairment and activating ferroptosis in cell cultures, compared to wild-type SOD1 fibrils. Our study provides insights into the structural mechanisms by which SOD1 mutants aggregate and induce cytotoxicity in ALS.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu-Ya Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Ning Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Department of Neurology, Shenzhen People’s Hospital (the First Affiliated Hospital of Southern University of Science and Technology), the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People’s Hospital (the First Affiliated Hospital of Southern University of Science and Technology), the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Zhengzhi Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Weidong Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Baird MC, Likhite SB, Vetter TA, Caporale JR, Girard HB, Roussel FS, Howard AE, Schwartz MK, Reed AR, Kaleem A, Zhang X, Meyer KC. Combination AAV therapy with galectin-1 and SOD1 downregulation demonstrates superior therapeutic effect in a severe ALS mouse model. Mol Ther Methods Clin Dev 2024; 32:101312. [PMID: 39257530 PMCID: PMC11385756 DOI: 10.1016/j.omtm.2024.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Neuroinflammation is a miscreant in accelerating progression of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, treatments targeting neuroinflammation alone have led to disappointing results in clinical trials. Both neuronal and non-neuronal cell types have been implicated in the pathogenesis of ALS, and multiple studies have shown correction of each cell type has beneficial effects on disease outcome. Previously, we shown that AAV9-mediated superoxide dismutase 1 (SOD1) suppression in motor neurons and astrocytes significantly improves motor function and extends survival in ALS mouse models. Despite neuron and astrocyte correction, ALS mice still succumb to death with microgliosis observed in endpoint tissue. Therefore, we hypothesized that the optimal therapeutic approach will target and simultaneously correct motor neurons, astrocytes, and microglia. Here, we developed a novel approach to indirectly target microglia with galectin-1 (Gal1) and combined this with our previously established AAV9.SOD1.short hairpin RNA treatment. We show Gal1 conditioning of SOD1 G93A microglia decreases inflammatory markers and rescues motor neuron death in vitro. When paired with SOD1 downregulation, we found a synergistic effect of combination treatment in vivo and show a significant extension of survival of SOD1 G93A mice over SOD1 suppression alone. These results highlight the importance of targeting inflammatory microglia as a critical component in future therapeutic development.
Collapse
Affiliation(s)
- Megan C Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Shibi B Likhite
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph R Caporale
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Holly B Girard
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Florence S Roussel
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abigail E Howard
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Maura K Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Addison R Reed
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abuzar Kaleem
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Xiaojin Zhang
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathrin C Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Jang DG, Dou J, Koubek EJ, Teener S, Zhao L, Bakulski KM, Mukherjee B, Batterman SA, Feldman EL, Goutman SA. Metal mixtures associate with higher amyotrophic lateral sclerosis risk and mortality independent of genetic risk and correlate to self-reported exposures: a case-control study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.27.24303143. [PMID: 38464233 PMCID: PMC10925361 DOI: 10.1101/2024.02.27.24303143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background The pathogenesis of amyotrophic lateral sclerosis (ALS) involves both genetic and environmental factors. This study investigates associations between metal measures in plasma and urine, ALS risk and survival, and exposure sources. Methods Participants with and without ALS from Michigan provided plasma and urine samples for metal measurement via inductively coupled plasma mass spectrometry. Odds and hazard ratios for each metal were computed using risk and survival models. Environmental risk scores (ERS) were created to evaluate the association between exposure mixtures and ALS risk and survival and exposure source. ALS (ALS-PGS) and metal (metal-PGS) polygenic risk scores were constructed from an independent genome-wide association study and relevant literature-selected SNPs. Results Plasma and urine samples from 454 ALS and 294 control participants were analyzed. Elevated levels of individual metals, including copper, selenium, and zinc, significantly associated with ALS risk and survival. ERS representing metal mixtures strongly associated with ALS risk (plasma, OR=2.95, CI=2.38-3.62, p<0.001; urine, OR=3.10, CI=2.43-3.97, p<0.001) and poorer ALS survival (plasma, HR=1.42, CI=1.24-1.63, p<0.001; urine, HR=1.52, CI=1.31-1.76, p<0.001). Addition of the ALS-PGS or metal-PGS did not alter the significance of metals with ALS risk and survival. Occupations with high potential of metal exposure associated with elevated ERS. Additionally, occupational and non-occupational metal exposures associated with measured plasma and urine metals. Conclusion Metals in plasma and urine associated with increased ALS risk and reduced survival, independent of genetic risk, and correlated with occupational and non-occupational metal exposures. These data underscore the significance of metal exposure in ALS risk and progression.
Collapse
Affiliation(s)
- Dae Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Samuel Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Lili Zhao
- Department of Biostatistics, Corewell Health, Royal Oak, MI
| | | | | | - Stuart A. Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| |
Collapse
|
6
|
Guan T, Guo Y, Zhou T, Yu Q, Sun J, Sun B, Zhang G, Kong J. Oxidized SOD1 accelerates cellular senescence in neural stem cells. Stem Cell Res Ther 2024; 15:55. [PMID: 38414053 PMCID: PMC10900543 DOI: 10.1186/s13287-024-03669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Neural stem cells (NSCs), especially human NSCs, undergo cellular senescence characterized by an irreversible proliferation arrest and loss of stemness after prolonged culture. While compelling correlative data have been generated to support the oxidative stress theory as one of the primary determinants of cellular senescence of NSCs, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and cellular senescence of NSCs has yet to be firmly established. Human SOD1 (hSOD1) is susceptible to oxidation. Once oxidized, it undergoes aberrant misfolding and gains toxic properties associated with age-related neurodegenerative disorders. The present study aims to examine the role of oxidized hSOD1 in the senescence of NSCs. METHODS NSCs prepared from transgenic mice expressing the wild-type hSOD1 gene were maintained in culture through repeated passages. Extracellular vesicles (EVs) were isolated from culture media at each passage. To selectively knock down oxidized SOD1 in NSCs and EVs, we used a peptide-directed chaperone-mediated protein degradation system named CT4 that we developed recently. RESULTS In NSCs expressing the hSOD1 from passage 5, we detected a significant increase of oxidized hSOD1 and an increased expression of biomarkers of cellular senescence, including upregulation of P53 and SA-β-Gal and cytoplasmic translocation of HMGB1. The removal of oxidized SOD1 remarkably increased the proliferation and stemness of the NSCs. Meanwhile, EVs derived from senescent NSCs carrying the wild-type hSOD1 contained high levels of oxidized hSOD1, which could accelerate the senescence of young NSCs and induce the death of cultured neurons. The removal of oxidized hSOD1 from the EVs abolished their senescence-inducing activity. Blocking oxidized SOD1 on EVs with the SOD1 binding domain of the CT4 peptide mitigated its toxicity to neurons. CONCLUSION Oxidized hSOD1 is a causal factor in the cellular senescence of NSCs. The removal of oxidized hSOD1 is a strategy to rejuvenate NSCs and to improve the quality of EVs derived from senescent cells.
Collapse
Affiliation(s)
- Teng Guan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Ting Zhou
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Yu
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jingyi Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Baoliang Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Santhanam V, Modi P, Mishra UK, Jahan I, Ramesh NG, Deep S. Rational design and synthesis of novel triazole- and tetrazole-fused iminosugars as potential inhibitors of amyotrophic lateral sclerosis (ALS) linked SOD1 aggregation. Int J Biol Macromol 2023; 253:126900. [PMID: 37714236 DOI: 10.1016/j.ijbiomac.2023.126900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In this manuscript we report the first example of an iminosugar that inhibits superoxide dismutase fibrillation associated with the amyotrophic lateral sclerosis (ALS). The present work involves synthesis of novel triazole and tetrazole embedded iminosugars, synthesized in 11-13 high yielding steps starting from readily available tri-O-benzyl-D-glucal and proceeding through a concomitant azidation - thermal intramolecular [3 + 2] cycloaddition reaction as the key step. One of these pre-designed iminosugars was found to inhibit fibrillation of SOD1 and also has shown propensity to break pre-formed fibrils. Docking and MD simulation studies suggest that the most probable interaction of this compound is a hydrogen bonding with Arg69, a loop IV residue of SOD1, which has a crucial role in stabilizing the native conformation of SOD1.
Collapse
Affiliation(s)
- Venkatesan Santhanam
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Modi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Umesh K Mishra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ishrat Jahan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
8
|
Guan T, Zhou T, Zhang X, Guo Y, Yang C, Lin J, Zhang JV, Cheng Y, Marzban H, Wang YT, Kong J. Selective removal of misfolded SOD1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. Cell Mol Life Sci 2023; 80:304. [PMID: 37752364 PMCID: PMC11072549 DOI: 10.1007/s00018-023-04956-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. There is no cure currently. The discovery that mutations in the gene SOD1 are a cause of ALS marks a breakthrough in the search for effective treatments for ALS. SOD1 is an antioxidant that is highly expressed in motor neurons. Human SOD1 is prone to aberrant modifications. Familial ALS-linked SOD1 variants are particularly susceptible to aberrant modifications. Once modified, SOD1 undergoes conformational changes and becomes misfolded. This study aims to determine the effect of selective removal of misfolded SOD1 on the pathogenesis of ALS. METHODS Based on the chaperone-mediated protein degradation pathway, we designed a fusion peptide named CT4 and tested its efficiency in knocking down intracellularly misfolded SOD1 and its efficacy in modifying the pathogenesis of ALS. RESULTS Expression of the plasmid carrying the CT4 sequence in human HEK cells resulted in robust removal of misfolded SOD1 induced by serum deprivation. Co-transfection of the CT4 and the G93A-hSOD1 plasmids at various ratios demonstrated a dose-dependent knockdown efficiency on G93A-hSOD1, which could be further increased when misfolding of SOD1 was enhanced by serum deprivation. Application of the full-length CT4 peptide to primary cultures of neurons expressing the G93A variant of human SOD1 revealed a time course of the degradation of misfolded SOD1; misfolded SOD1 started to decrease by 2 h after the application of CT4 and disappeared by 7 h. Intravenous administration of the CT4 peptide at 10 mg/kg to the G93A-hSOD1 reduced human SOD1 in spinal cord tissue by 68% in 24 h and 54% in 48 h in presymptomatic ALS mice. Intraperitoneal administration of the CT4 peptide starting from 60 days of age significantly delayed the onset of ALS and prolonged the lifespan of the G93A-hSOD1 mice. CONCLUSIONS The CT4 peptide directs the degradation of misfolded SOD1 in high efficiency and specificity. Selective removal of misfolded SOD1 significantly delays the onset of ALS, demonstrating that misfolded SOD1 is the toxic form of SOD1 that causes motor neuron death. The study proves that selective removal of misfolded SOD1 is a promising treatment for ALS.
Collapse
Affiliation(s)
- Teng Guan
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ting Zhou
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosha Zhang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Chaoxian Yang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurobiology, Southwest Medical University, Luzhou, China
| | - Justin Lin
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jiasi Vicky Zhang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yongquan Cheng
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yu Tian Wang
- Brain Research Centre and Department of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
9
|
Yadav H, Shirumalla RK. Emerging trends in IRAK-4 kinase research. Mol Biol Rep 2023; 50:7825-7837. [PMID: 37490192 DOI: 10.1007/s11033-023-08438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/06/2023] [Indexed: 07/26/2023]
Abstract
The IRAK-4 kinase lies at a critical signaling node that drives cancer cell survival through multiple mechanisms, activation, and translocation of NF-κB mediated inflammatory responses and innate immune signaling through regulation of interferon-α/β receptor (IFNα/β). Inhibition, of IRAK-4, has consequently drawn a lot of attention in recent years to address indications ranging from oncology to autoimmune disorders to neurodegeneration, etc. However, the key stumbling block in targeting IRAK-4 is that despite the inhibition of the kinase activity using an inhibitor the target remains effective, reducing the potential of an inhibitor. This is due to the "scaffolding effect" because of which although regulation of downstream processes by IRAK-4 has been primarily linked with kinase function; however, still, various reports have suggested that IRAK-4 has a non-kinase function in a variety of cell types. This is attributed to the myddosome complex formed by IRAK-4 with myd88, IRAK-2, and IRAK-1 which by itself can cause the activation of downstream effector TRAF6 despite inhibition of the kinase domain of IRAK-4. With this challenge, several groups initiated the development of targeting protein degraders of IRAK-4 using Proteolysis-Targeting Chimeras (PROTACs) technology to completely remove the IRAK-4 from the cellular milieu. In this review, we will capture all these developments and the evolving science around this target.
Collapse
Affiliation(s)
- Himanshu Yadav
- SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana, 122505, India
| | - Raj Kumar Shirumalla
- SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana, 122505, India.
| |
Collapse
|
10
|
Sharma S, Tomar VR, Deep S. Myricetin: A Potent Anti-Amyloidogenic Polyphenol against Superoxide Dismutase 1 Aggregation. ACS Chem Neurosci 2023. [PMID: 37314311 DOI: 10.1021/acschemneuro.3c00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is believed to be caused by the aggregation of misfolded or mutated superoxide dismutase 1 (SOD1). As there is currently no treatment, research into aggregation inhibitors continues. Based on docking, molecular dynamics (MD) simulations, and experimental observations, we propose that myricetin, a plant flavonoid, can act as a potent anti-amyloidogenic polyphenol against SOD1 aggregation. Our MD simulation results showed that myricetin stabilizes the protein interface, destabilizes the preformed fibril, and decreases the rate of fibril elongation. Myricetin inhibits the aggregation of SOD1 in a dose-dependent manner as shown by the ThT aggregation kinetics curves. Our transmission electron microscopy, dynamic light scattering, and circular dichroism experiments indicate that fewer shorter fibrils have formed. Fluorescence spectroscopy results predict the involvement of a static quenching mechanism characterized by a strong binding between protein and myricetin. Importantly, size exclusion chromatography revealed the potential of myricetin for fibril destabilization and depolymerization. These experimental observations complement the MD results. Thus, myricetin is a potent SOD1 aggregation inhibitor that can reduce the fibril load. Using the structure of myricetin as a reference, it is possible to design more effective therapeutic inhibitors against ALS that prevent the disease and reverse its effects.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, Delhi 10016, India
| | - Vijay Raj Tomar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, Delhi 10016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, Delhi 10016, India
| |
Collapse
|
11
|
Chen LX, Xu HF, Lin HX, Yang XX, Li HF, Wu ZY. Pathogenicity classification of SOD1 variants of uncertain significance by in vitro aggregation propensity. Neurobiol Aging 2023; 123:182-190. [PMID: 36376198 DOI: 10.1016/j.neurobiolaging.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
Deposition of insoluble SOD1 aggregates in motor neurons is the hallmark of SOD1-associated ALS. Mutant SOD1 protein promotes structural instability that leads to misfolded SOD1 protein aggregates, which can be recapitulated in vitro. Therefore, aggregation propensity in cell lines can be a reliable indicator for the pathogenicity classification of SOD1 variants. Herein, we performed in vitro experiment to classify the pathogenicity of 34 SOD1 variants of uncertain significance (VUS) from 215 variants reported previously. The clinical features of 234 ALS patients with 31 SOD1 likely pathogenic (LP) variants were summarized. 31 VUS variants formed aggregates spontaneously, indicating LP variants. Missense variants were mainly located in the C-terminal of SOD1. Among patients with 31 SOD1 LP variants, 75% of patients had lower limb onset. The onset of familial ALS patients (45.7±14.0 years) is earlier than sporadic ALS patients (50.6±13.1 years). Our results expand the spectrum of SOD1 mutations and highlight the natural history of SOD1-positive ALS patients for further clinical trials in SOD1-related ALS.
Collapse
Affiliation(s)
- Lu-Xi Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Feng Xu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui-Xia Lin
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xia Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Liu W, Zhu SO, Guo YL, Tu LF, Zhen YQ, Zhao RY, Ou-Yang L, Kurihara H, He RR, Liu B. BL-918, a small-molecule activator of ULK1, induces cytoprotective autophagy for amyotrophic lateral sclerosis therapy. Acta Pharmacol Sin 2023; 44:524-537. [PMID: 36042292 PMCID: PMC9958028 DOI: 10.1038/s41401-022-00972-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/28/2022] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common fatal neurodegenerative diseases in adults. ALS pathogenesis is associated with toxic SOD1 aggregates generated by mutant SOD1. Since autophagy is responsible for the clearance of toxic protein aggregates including SOD1 aggregates, autophagy induction has been considered as a potential strategy for treating ALS. Autophagic signaling is initiated by unc-51 like autophagy activating kinase 1 (ULK1) complex. We previously identified that BL-918 as a specific ULK1 activator, which exerted cytoprotective effect against Parkinson's disease in vitro and in vivo. In this study we investigated whether BL-918 exerted a therapeutic effect against ALS, and characterized its pharmacokinetic profile in rats. In hSODG93A-NSC34 cells, treatment with BL-918 (5, 10 μM) dose-dependently induced ULK1-dependent autophagy, and eliminated toxic SOD1 aggregates. In SODG93A mice, administration of BL-918 (40, 80 mg/kg, b.i.d., i.g.) dose-dependently prolonged lifespan and improved the motor function, and enhanced the clearance of SOD1 aggregates in spinal cord and cerebral cortex through inducing autophagy. In the pharmacokinetic study conducted in rats, we found BL-918 and its 2 metabolites (M8 and M10) present in spinal cord and brain; after intragastric and intravenous administration, BL-918 reached the highest blood concentration compared to M8 and M10. Collectively, ULK1 activator BL-918 displays a therapeutic potential on ALS through inducing cytoprotective autophagy. This study provides a further clue for autophagic dysfunction in ALS pathogenesis.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi-Ou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu-Lin Guo
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Long-Fang Tu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Yong-Qi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong-Yan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Ou-Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hiroshi Kurihara
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Rong-Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Yagita K, Sasagasako N, Koyama S, Noguchi H, Honda H. Amyotrophic lateral sclerosis with TDP-43 abnormalities exhibiting globular glial tau inclusions in frontotemporal lobes and pallido-nigral system. Neuropathology 2023; 43:117-126. [PMID: 36003035 DOI: 10.1111/neup.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023]
Abstract
Here we present the autopsy case of an 80-year-old woman with a 9-year history of motor neuron disease and atypical Parkinsonism. Her initial symptom was gait disturbance, and she subsequently developed limb weakness and Parkinsonism without response to levodopa. Her motor symptoms progressed to bulbar palsy, and she died of respiratory failure. Postmortem examination revealed characteristic findings of amyotrophic lateral sclerosis (ALS), including motor neuronal loss with astrogliosis, corticospinal tract degeneration, and TAR DNA-binding protein of 43 kDa abnormalities, including nuclear loss and skein-like inclusions. In contrast, severe tau pathological changes were seen in the frontotemporal lobes and pallido-nigral system. Tau pathologies affected not only neuronal components, such as neurofibrillary tangles and neuropil threads, but also glial cells (astrocytes and oligodendrocytes). Some glial tau pathologies exhibited peculiar round accumulations, reminiscent of globular glial inclusions (GGIs) in globular glial tauopathy. This unique autopsy case demonstrates that ALS with TDP-43 could be comorbid with globular glial tau inclusions and indicates that common pathological mechanisms exist among ALS and GGI formation.
Collapse
Affiliation(s)
- Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Omuta, Japan
| | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Koo BK, Whitelegge J. Structural Analysis of SOD1 Fibrils with Mass Spectrometry, Limited Proteolysis, and Atomic Force Microscopy (AFM). Methods Mol Biol 2023; 2551:481-495. [PMID: 36310221 DOI: 10.1007/978-1-0716-2597-2_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This protocol describes a method to purify SOD1 in Saccharomyces cerevisiae to characterize using ICP-MS and AFM, to agitate and fibrillate for aggregation of SOD1. The human SOD1 (hSOD1) is a 32-kDa homodimer, with one copper- and one zinc-binding site per 153-amino acid subunit. Misfolded protein aggregates are often correlated with diseases known as amyloidosis, including ALS, Alzheimer's, Parkinson's, and prion disease (Valentine and Hart, Proc Natl Acad Sci USA 100: 3617-3622, 2003; Tanzi and Bertram, Cell 120: 545-555, 2005; Soto and Pritzkow, Nat Neurosci 21:1332-1340, 2018; Sarafian et al., J Neurosci Res 95:1871-1887, 2017). Proteinaceous aggregates containing hSOD1 have frequently been found in the spinal cords of ALS patients.
Collapse
Affiliation(s)
- Bon-Kyung Koo
- The Department of Chemistry and Biochemistry, School of Physical Sciences, University of California, Los Angeles, USA
| | - Julian Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
15
|
Jiao F, Zhou B, Meng L. The regulatory mechanism and therapeutic potential of transcription factor EB in neurodegenerative diseases. CNS Neurosci Ther 2022; 29:37-59. [PMID: 36184826 PMCID: PMC9804079 DOI: 10.1111/cns.13985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023] Open
Abstract
The autophagy-lysosomal pathway (ALP) is involved in the degradation of protein aggregates and damaged organelles. Transcription factor EB (TFEB), a major regulator of ALP, has emerged as a leading factor in addressing neurodegenerative disease pathology, including Alzheimer's disease (AD), Parkinson's disease (PD), PolyQ diseases, and Amyotrophic lateral sclerosis (ALS). In this review, we delineate the regulation of TFEB expression and its functions in ALP. Dysfunctions of TFEB and its role in the pathogenesis of several neurodegenerative diseases are reviewed. We summarize the protective effects and molecular mechanisms of some TFEB-targeted agonists in neurodegenerative diseases. We also offer our perspective on analyzing the pros and cons of these agonists in the treatment of neurodegenerative diseases from the perspective of drug development. More studies on the regulatory mechanisms of TFEB in other biological processes will aid our understanding of the application of TFEB-targeted therapy in neurodegeneration.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| | - Bojie Zhou
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| | - Lingyan Meng
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| |
Collapse
|
16
|
Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac145. [PMID: 35783556 PMCID: PMC9242622 DOI: 10.1093/braincomms/fcac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer’s and Parkinson’s disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis. As with other neurodegenerative diseases, the condition typically begins at an initial point and then spreads along neuroanatomical tracts. This feature of disease progression suggests the spreading of prion-like proteins called prionoids in the affected tissues, which is similar to the spread of prion observed in Creutzfeldt-Jakob disease. Intensive research over the last decade has proposed the ALS-causing gene products Cu/Zn superoxide dismutase 1, TAR DNA-binding protein of 43 kDa, and fused in sarcoma as very plausible prionoids contributing to the spread of the pathology. In this review, we will discuss the molecular and cellular mechanisms leading to the propagation of these prionoids in ALS.
Collapse
Affiliation(s)
- Philippe Gosset
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - William Camu
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | | |
Collapse
|
17
|
Wang LQ, Ma Y, Yuan HY, Zhao K, Zhang MY, Wang Q, Huang X, Xu WC, Dai B, Chen J, Li D, Zhang D, Wang Z, Zou L, Yin P, Liu C, Liang Y. Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion. Nat Commun 2022; 13:3491. [PMID: 35715417 PMCID: PMC9205981 DOI: 10.1038/s41467-022-31240-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease. Misfolded Cu, Zn-superoxide dismutase (SOD1) has been linked to both familial and sporadic ALS. SOD1 fibrils formed in vitro share toxic properties with ALS inclusions. Here we produced cytotoxic amyloid fibrils from full-length apo human SOD1 under reducing conditions and determined the atomic structure using cryo-EM. The SOD1 fibril consists of a single protofilament with a left-handed helix. The fibril core exhibits a serpentine fold comprising N-terminal segment (residues 3–55) and C-terminal segment (residues 86–153) with an intrinsic disordered segment. The two segments are zipped up by three salt bridge pairs. By comparison with the structure of apo SOD1 dimer, we propose that eight β-strands (to form a β-barrel) and one α-helix in the subunit of apo SOD1 convert into thirteen β-strands stabilized by five hydrophobic cavities in the SOD1 fibril. Our data provide insights into how SOD1 converts between structurally and functionally distinct states. Misfolded SOD1 has been linked to both familial and sporadic ALS. Here the authors have determined the cryo-EM structure of SOD1 fibrils, providing insights into the conversion of SOD1 from its immature form into an aggregated form during pathogenesis of ALS.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mu-Ya Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xi Huang
- Department of Neurology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 518020, Shenzhen, China
| | - Wen-Chang Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Bin Dai
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, 200030, Shanghai, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhengzhi Wang
- School of Civil Engineering, Wuhan University, 430072, Wuhan, China
| | - Liangyu Zou
- Department of Neurology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 518020, Shenzhen, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China. .,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China.
| |
Collapse
|
18
|
Funada C, Tanino N, Fukaya M, Mikajiri Y, Nishiguchi M, Otake M, Nakasuji H, Kawahito R, Abe F. SOD1 mutations cause hypersensitivity to high-pressure-induced oxidative stress in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130049. [PMID: 34728328 DOI: 10.1016/j.bbagen.2021.130049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022]
Abstract
Living organisms are subject to various mechanical stressors, such as high hydrostatic pressure. Empirical evidence shows that under high pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. Here, we demonstrate that superoxide dismutase 1 (Sod1) plays a role in resisting high pressure for cell growth. Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. When these mutant cells were cultured under 25 MPa, their intracellular O2•- levels increased while sod1∆ mutant genome stability was unaffected. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. The sod1∆ mutant is known to exhibit methionine and lysine auxotrophy. However, excess methionine addition or overexpression of the lysine permease gene LYP1 did not counteract high-pressure sensitivity in the sod1 mutants, suggesting that their amino acid availability might be intact under 25 MPa. Interestingly, an exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria appeared to partially restore the high-pressure growth ability in the sod1 mutants. Taken these results together, we suggest that high pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. BACKGROUND Empirical evidence shows that under high hydrostatic pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. In the current study, we aimed to explore the role of superoxide dismutase 1 (Sod1) in yeast able to grow under high pressure. METHODS Wild type and sod1 mutant cells were cultured in high-pressure chambers under 25 MPa (~250 kg/cm2). The SOD activity in whole cell extracts and 6His-tagged Sod1 recombinant proteins was analyzed using an SOD assay kit. The O2•- generation in cells was estimated by fluorescence staining. RESULTS Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. Exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria partially restored the high-pressure growth ability in the sod1 mutants. CONCLUSIONS High pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. GENERAL SIGNIFICANCE Unlike external free radical-generating compounds, high-pressure treatment appeared to increase endogenous O2•- levels in yeast cells. Our experimental system offers a unique approach to investigating the physiological responses to mechanical and oxidative stresses in human body.
Collapse
Affiliation(s)
- Chisako Funada
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Nanami Tanino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Miina Fukaya
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yu Mikajiri
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masayoshi Nishiguchi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masato Otake
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Hiroko Nakasuji
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Reika Kawahito
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
19
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
20
|
Sirangelo I, Iannuzzi C. Understanding the Role of Protein Glycation in the Amyloid Aggregation Process. Int J Mol Sci 2021; 22:ijms22126609. [PMID: 34205510 PMCID: PMC8235188 DOI: 10.3390/ijms22126609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Protein function and flexibility is directly related to the native distribution of its structural elements and any alteration in protein architecture leads to several abnormalities and accumulation of misfolded proteins. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidosis characterized by the accumulation of amyloid aggregates both in the extracellular space of tissues and as intracellular deposits. Post-translational modifications are known to have an active role in the in vivo amyloid aggregation as able to affect protein structure and dynamics. Among them, a key role seems to be played by non-enzymatic glycation, the most unwanted irreversible modification of the protein structure, which strongly affects long-living proteins throughout the body. This study provided an overview of the molecular effects induced by glycation on the amyloid aggregation process of several protein models associated with misfolding diseases. In particular, we analyzed the role of glycation on protein folding, kinetics of amyloid formation, and amyloid cytotoxicity in order to shed light on the role of this post-translational modification in the in vivo amyloid aggregation process.
Collapse
|
21
|
Liguori F, Amadio S, Volonté C. Where and Why Modeling Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22083977. [PMID: 33921446 PMCID: PMC8070525 DOI: 10.3390/ijms22083977] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Over the years, researchers have leveraged a host of different in vivo models in order to dissect amyotrophic lateral sclerosis (ALS), a neurodegenerative/neuroinflammatory disease that is heterogeneous in its clinical presentation and is multigenic, multifactorial and non-cell autonomous. These models include both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs and, more recently, non-human primates. Despite their obvious differences and peculiarities, only the concurrent and comparative analysis of these various systems will allow the untangling of the causes and mechanisms of ALS for finally obtaining new efficacious therapeutics. However, harnessing these powerful organisms poses numerous challenges. In this context, we present here an updated and comprehensive review of how eukaryotic unicellular and multicellular organisms that reproduce a few of the main clinical features of the disease have helped in ALS research to dissect the pathological pathways of the disease insurgence and progression. We describe common features as well as discrepancies among these models, highlighting new insights and emerging roles for experimental organisms in ALS.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
- Institute for Systems Analysis and Computer Science “A. Ruberti”, National Research Council (IASI—CNR), 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-50170-3084
| |
Collapse
|
22
|
Källstig E, McCabe BD, Schneider BL. The Links between ALS and NF-κB. Int J Mol Sci 2021; 22:3875. [PMID: 33918092 PMCID: PMC8070122 DOI: 10.3390/ijms22083875] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease wherein motor neuron degeneration leads to muscle weakness, progressive paralysis, and death within 3-5 years of diagnosis. Currently, the cause of ALS is unknown but, as with several neurodegenerative diseases, the potential role of neuroinflammation has become an increasingly popular hypothesis in ALS research. Indeed, upregulation of neuroinflammatory factors have been observed in both ALS patients and animal models. One such factor is the inflammatory inducer NF-κB. Besides its connection to inflammation, NF-κB activity can be linked to several genes associated to familial forms of ALS, and many of the environmental risk factors of the disease stimulate NF-κB activation. Collectively, this has led many to hypothesize that NF-κB proteins may play a role in ALS pathogenesis. In this review, we discuss the genetic and environmental connections between NF-κB and ALS, as well as how this pathway may affect different CNS cell types, and finally how this may lead to motor neuron degeneration.
Collapse
Affiliation(s)
| | | | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland; (E.K.); (B.D.M.)
| |
Collapse
|
23
|
Shafiq K, Sanghai N, Guo Y, Kong J. Implication of post-translationally modified SOD1 in pathological aging. GeroScience 2021; 43:507-515. [PMID: 33608813 PMCID: PMC8110659 DOI: 10.1007/s11357-021-00332-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/31/2021] [Indexed: 12/18/2022] Open
Abstract
Why certain people relish healthy aging throughout their life span while others suffer pathological consequences? In this review, we focus on some of the dominant paradigms of pathological aging, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), and predict that the antioxidant superoxide dismutase 1 (SOD1), when post-translationally modified by aging-associated oxidative stress, acts as a mechanism to accelerated aging in these age-related neurodegenerative diseases. Oxidative modifications of natively reduced SOD1 induce pathological confirmations such as misfolding, leading to a subsequent formation of monomeric, oligomeric, and multimeric aggregates. Misfolded SOD1 propagates like prions from cell to cell. These modified conformations are detected in brain tissues in ALS, AD, and PD, and are considered a contributing factor to their initial pathogenesis. We have also elaborated on oxidative stress-induced non-native modifications of SOD1 and offered a logistic argument on their global implication in accelerated or pathological aging in the context of ALS, AD, and PD.
Collapse
Affiliation(s)
- Kashfia Shafiq
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 27, King's College Cir, Toronto, ON, M5S, Canada
| | - Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.,Pathological Department, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
24
|
Genoud S, Jones MWM, Trist BG, Deng J, Chen S, Hare DJ, Double KL. Simultaneous structural and elemental nano-imaging of human brain tissue. Chem Sci 2020; 11:8919-8927. [PMID: 34123146 PMCID: PMC8163372 DOI: 10.1039/d0sc02844d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Examining chemical and structural characteristics of micro-features in complex tissue matrices is essential for understanding biological systems. Advances in multimodal chemical and structural imaging using synchrotron radiation have overcome many issues in correlative imaging, enabling the characterization of distinct microfeatures at nanoscale resolution in ex vivo tissues. We present a nanoscale imaging method that pairs X-ray ptychography and X-ray fluorescence microscopy (XFM) to simultaneously examine structural features and quantify elemental content of microfeatures in complex ex vivo tissues. We examined the neuropathological microfeatures Lewy bodies, aggregations of superoxide dismutase 1 (SOD1) and neuromelanin in human post-mortem Parkinson's disease tissue. Although biometals play essential roles in normal neuronal biochemistry, their dyshomeostasis is implicated in Parkinson's disease aetiology. Here we show that Lewy bodies and SOD1 aggregates have distinct elemental fingerprints yet are similar in structure, whilst neuromelanin exhibits different elemental composition and a distinct, disordered structure. The unique approach we describe is applicable to the structural and chemical characterization of a wide range of complex biological tissues at previously unprecedented levels of detail. Structural and chemical characterisation of microfeatures in unadulterated Parkinson's disease brain tissue using synchrotron nanoscale XFM and ptychography.![]()
Collapse
Affiliation(s)
- Sian Genoud
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia
| | - Michael W M Jones
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Benjamin Guy Trist
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia
| | - Junjing Deng
- Advanced Photon Source, Argonne National Laboratory Lemont IL 60439 USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory Lemont IL 60439 USA
| | - Dominic James Hare
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia .,School of Biosciences, Department of Clinical Pathology, The University of Melbourne Parkville VIC 3010 Australia .,Atomic Medicine Initiative, University of Technology Sydney NSW 2007 Australia
| | - Kay L Double
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia
| |
Collapse
|
25
|
Studying ALS: Current Approaches, Effect on Potential Treatment Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:195-217. [PMID: 32383122 DOI: 10.1007/978-3-030-41283-8_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, characterized by inevitable progressive paralysis. To date, only two disease modifying therapeutic options are available for the patients with ALS, although they show very modest effect on disease course. The main reason of failure in the field of pharmacological correction of ALS is inability to untangle complex relationships taking place during ALS initiation and progression. Traditional methods of research, based on morphology or transgenic animal models studying provided lots of information about ALS throughout the years. However, translation of these results to humans was unsuccessful due to incomplete recapitulation of molecular pathology and overall inadequacy of the models used in the research.In this review we summarize current knowledge regarding ALS molecular pathology with depiction of novel methods applied recently for the studies. Furthermore we describe present and potential treatment strategies that are based on the recent findings in ALS disease mechanisms.
Collapse
|
26
|
Zhuang X, Zhao B, Liu Z, Song F, Lu J. The effects of rutin and troxerutin on stabilizing SOD1 and inhibiting protein aggregation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8611. [PMID: 31657862 DOI: 10.1002/rcm.8611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/13/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Xiaoyu Zhuang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Bing Zhao
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
27
|
Zhuang X, Li X, Zhao B, Liu Z, Song F, Lu J. Native Mass Spectrometry Based Method for Studying the Interactions between Superoxide Dismutase 1 and Stilbenoids. ACS Chem Neurosci 2020; 11:184-190. [PMID: 31820923 DOI: 10.1021/acschemneuro.9b00574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To inhibit the abnormal aggregation of Cu, Zn-superoxide dismutase (SOD1) is regarded as a potential therapeutic strategy of SOD1-linked amyotrophic lateral sclerosis (ALS). Herein the interactions between SOD1 and four stilbene-based polyphenols, namely, resveratrol, oxyresveratrol, polydatin, and 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glycoside (THSG), were investigated using electrospray ionization mass spectrometry (ESI-MS) combined with ion mobility (IM) spectrometry. The addition of tandem MS to the study of SOD1-ligand complexes provides further insight into their gas-phase stability. Monitoring the unfolding of SOD1-ligand complexes using IM-MS allows observation of subtle changes in the protein stability upon ligand binding. From the MS/MS and IM-MS measurements, polydatin and THSG were highlighted as the strongest bound compounds in the gas phase, and both of them appear to provide a stabilizing effect on the SOD1 dimer conformation. In addition, the data of fluorescence assays clearly show the ability of the ligands to inhibit apoSOD1 from aggregation, and polydatin was found to have the strongest inhibitory effect. Overall, the method described here can be an effective approach to investigate the interactions between SOD1 and other drug-like molecules.
Collapse
Affiliation(s)
- Xiaoyu Zhuang
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xiuxiu Li
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bing Zhao
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianzhong Lu
- School of Phamacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
28
|
Khan MAI, Weininger U, Kjellström S, Deep S, Akke M. Adsorption of unfolded Cu/Zn superoxide dismutase onto hydrophobic surfaces catalyzes its formation of amyloid fibrils. Protein Eng Des Sel 2019; 32:77-85. [PMID: 31832682 DOI: 10.1093/protein/gzz033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 11/12/2022] Open
Abstract
Intracellular aggregates of superoxide dismutase 1 (SOD1) are associated with amyotrophic lateral sclerosis. In vivo, aggregation occurs in a complex and dense molecular environment with chemically heterogeneous surfaces. To investigate how SOD1 fibril formation is affected by surfaces, we used an in vitro model system enabling us to vary the molecular features of both SOD1 and the surfaces, as well as the surface area. We compared fibril formation in hydrophilic and hydrophobic sample wells, as a function of denaturant concentration and extraneous hydrophobic surface area. In the presence of hydrophobic surfaces, SOD1 unfolding promotes fibril nucleation. By contrast, in the presence of hydrophilic surfaces, increasing denaturant concentration retards the onset of fibril formation. We conclude that the mechanism of fibril formation depends on the surrounding surfaces and that the nucleating species might correspond to different conformational states of SOD1 depending on the nature of these surfaces.
Collapse
Affiliation(s)
- Mohammad Ashhar I Khan
- Biophysical Chemistry, Department of Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 221 00, Lund, Sweden.,Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ulrich Weininger
- Biophysical Chemistry, Department of Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Sven Kjellström
- Biochemistry and Structural Biology, Department of Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Mikael Akke
- Biophysical Chemistry, Department of Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| |
Collapse
|
29
|
Cohen NR, Zitzewitz JA, Bilsel O, Matthews CR. Nonnative structure in a peptide model of the unfolded state of superoxide dismutase 1 (SOD1): Implications for ALS-linked aggregation. J Biol Chem 2019; 294:13708-13717. [PMID: 31341015 DOI: 10.1074/jbc.ra119.008765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Dozens of mutations throughout the sequence of the gene encoding superoxide dismutase 1 (SOD1) have been linked to toxic protein aggregation in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). A parsimonious explanation for numerous genotypes resulting in a common phenotype would be mutation-induced perturbation of the folding free-energy surface that increases the populations of high-energy states prone to aggregation. The absence of intermediates in the folding of monomeric SOD1 suggests that the unfolded ensemble is a potential source of aggregation. To test this hypothesis, here we dissected SOD1 into a set of peptides end-labeled with FRET probes to model the local behavior of the corresponding sequences in the unfolded ensemble. Using time-resolved FRET, we observed that the peptide corresponding to the Loop VII-β8 sequence at the SOD1 C terminus was uniquely sensitive to denaturant. Utilizing a two-dimensional form of maximum entropy modeling, we demonstrate that the sensitivity to denaturant is the surprising result of a two-state-like transition from a compact to an expanded state. Variations of the peptide sequence revealed that the compact state involves a nonnative interaction between the disordered N terminus and the hydrophobic C terminus of the peptide. This nonnative intramolecular structure could serve as a precursor for intermolecular association and result in aggregation associated with ALS. We propose that this precursor would provide a common molecular target for therapeutic intervention in the dozens of ALS-linked SOD1 mutations.
Collapse
Affiliation(s)
- Noah R Cohen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
30
|
Tompa DR, Kadhirvel S. Far positioned ALS associated mutants of Cu/Zn SOD forms partially metallated, destabilized misfolding intermediates. Biochem Biophys Res Commun 2019; 516:494-499. [PMID: 31230748 DOI: 10.1016/j.bbrc.2019.06.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 11/18/2022]
Abstract
Loss of stability of proteins is associated with their misfolding and aggregation which results in disease. Despite of the higher stability of Cu/Zn superoxide dismutase (SOD1), the point mutations destabilize its structure, results in oligomerization and the aggregation of SOD1 which is closely associated with the motor neuron disorder, amyotrophic lateral sclerosis. In the present study, we analyzed the role of two SOD1 mutants V14G and E100G which are located far away from the metal sites, dimer interface and disulfide region. The SOD1 mutants were recombinantly produced and their activity, structure and stability were investigated using biochemical methods, CD and DSC methods. In comparison with wild-type SOD1, the mutants exhibited reduced activity and the CD data showed comparable secondary structures composition. However, the stability studies using chemical and thermal denaturation methods showed the mutants are destabilized. Interestingly, our DSC data strongly suggested the destabilization of the mutants is due to the partial metalation of Cu/Zn ions. This observation emphasizes that although the mutations V14G and E100G are located away from the metal sites, they could affect the metal binding similar to metal binding region mutants, which are more susceptible to misfold and aggregate.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
31
|
Chasapis CT, Makridakis M, Damdimopoulos AE, Zoidakis J, Lygirou V, Mavroidis M, Vlahou A, Miranda-Vizuete A, Spyrou G, Vlamis-Gardikas A. Implications of the mitochondrial interactome of mammalian thioredoxin 2 for normal cellular function and disease. Free Radic Biol Med 2019; 137:59-73. [PMID: 31018154 DOI: 10.1016/j.freeradbiomed.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
Abstract
Multiple thioredoxin isoforms exist in all living cells. To explore the possible functions of mammalian mitochondrial thioredoxin 2 (Trx2), an interactome of mouse Trx2 was initially created using (i) a monothiol mouse Trx2 species for capturing protein partners from different organs and (ii) yeast two hybrid screens on human liver and rat brain cDNA libraries. The resulting interactome consisted of 195 proteins (Trx2 included) plus the mitochondrial 16S RNA. 48 of these proteins were classified as mitochondrial (MitoCarta2.0 human inventory). In a second step, the mouse interactome was combined with the current four-membered mitochondrial sub-network of human Trx2 (BioGRID) to give a 53-membered human Trx2 mitochondrial interactome (52 interactor proteins plus the mitochondrial 16S RNA). Although thioredoxins are thiol-employing disulfide oxidoreductases, approximately half of the detected interactions were not due to covalent disulfide bonds. This finding reinstates the extended role of thioredoxins as moderators of protein function by specific non-covalent, protein-protein interactions. Analysis of the mitochondrial interactome suggested that human Trx2 was involved potentially in mitochondrial integrity, formation of iron sulfur clusters, detoxification of aldehydes, mitoribosome assembly and protein synthesis, protein folding, ADP ribosylation, amino acid and lipid metabolism, glycolysis, the TCA cycle and the electron transport chain. The oxidoreductase functions of Trx2 were verified by its detected interactions with mitochondrial peroxiredoxins and methionine sulfoxide reductase. Parkinson's disease, triosephosphate isomerase deficiency, combined oxidative phosphorylation deficiency, and lactate dehydrogenase b deficiency are some of the diseases where the proposed mitochondrial network of Trx2 may be implicated.
Collapse
Affiliation(s)
- Christos T Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology, Hellas (FORTH), Platani 26504, Greece
| | | | - Anastassios E Damdimopoulos
- Department of Biosciences and Nutrition, Center for Innovative Medicine (CIMED), Karolinska Institutet, Huddinge, Sweden
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Manolis Mavroidis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Giannis Spyrou
- Department of Clinical and Experimental Medicine, Division of Clinical Chemistry, Linköping University, S-581 85 Linköping, Sweden
| | | |
Collapse
|
32
|
Kesharwani R, Sarmah D, Kaur H, Mounika L, Verma G, Pabbala V, Kotian V, Kalia K, Borah A, Dave KR, Yavagal DR, Bhattacharya P. Interplay between Mitophagy and Inflammasomes in Neurological Disorders. ACS Chem Neurosci 2019; 10:2195-2208. [PMID: 30917655 DOI: 10.1021/acschemneuro.9b00117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mitophagy and inflammasomes have a pivotal role in the development of neuropathology. Molecular mechanisms behind mitophagy and inflammasomes are well-understood, but lacunae prevail in understanding the crosstalk between them in various neurological disorders. As mitochondrial dysfunction is the prime event in neurodegeneration, the clearance of impaired mitochondria is one of the main tasks for maintaining cell integrity in the majority of neuropathologies. Along with it, inflammasome activation also plays a major role, which is usually followed by mitochondrial dysfunction. The present review highlights basics of autophagy, mitophagy, and inflammasomes and the molecular mechanisms involved, and more importantly, it tries to elaborate the interplay between mitophagy and inflammasomes in various neurological disorders. This will help in upgrading the reader's understanding in exploring the link between mitophagy and inflammasomes, which has dealt with limitations in past studies.
Collapse
Affiliation(s)
- Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Leela Mounika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Veeresh Pabbala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar-788 011, Assam, India
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382 355, Gujarat, India
| |
Collapse
|
33
|
Gill C, Phelan JP, Hatzipetros T, Kidd JD, Tassinari VR, Levine B, Wang MZ, Moreno A, Thompson K, Maier M, Grimm J, Gill A, Vieira FG. SOD1-positive aggregate accumulation in the CNS predicts slower disease progression and increased longevity in a mutant SOD1 mouse model of ALS. Sci Rep 2019; 9:6724. [PMID: 31040321 PMCID: PMC6491559 DOI: 10.1038/s41598-019-43164-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Non-natively folded variants of superoxide dismutase 1 (SOD1) are thought to contribute to the pathogenesis of familial amyotrophic lateral sclerosis (ALS), however the relative toxicities of these variants are controversial. Here, we aimed to decipher the relationships between the different SOD1 variants (aggregated, soluble misfolded, soluble total) and the clinical presentation of ALS in the SOD1G93A mouse. Using a multi-approach strategy, we found that the CNS regions least affected by disease had the most aggregated SOD1. We also found that the levels of aggregated SOD1 in the spinal cord were inversely correlated with the disease progression. Conversely, in the most affected regions, we observed that there was a high soluble misfolded/soluble total SOD1 ratio. Taken together, these findings suggest that soluble misfolded SOD1 may be the disease driver in ALS, whereas aggregated SOD1 may serve to sequester the toxic species acting in a neuroprotective fashion.
Collapse
Affiliation(s)
- Cindy Gill
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | - James P Phelan
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | - Theo Hatzipetros
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | - Joshua D Kidd
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | | | - Beth Levine
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | - Monica Z Wang
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | - Andrew Moreno
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | - Kenneth Thompson
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | | | - Jan Grimm
- Neurimmune AG, Schlieren-Zurich, Switzerland
| | - Alan Gill
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | | |
Collapse
|
34
|
Wei YM, Han B. Beclin1 decreases the RIPA-insoluble fraction of amyotrophic lateral sclerosis-linked SOD1 mutant via autophagy. Neurosci Lett 2019; 690:106-111. [DOI: 10.1016/j.neulet.2018.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
|
35
|
Van Damme P, Robberecht W, Van Den Bosch L. Modelling amyotrophic lateral sclerosis: progress and possibilities. Dis Model Mech 2018; 10:537-549. [PMID: 28468939 PMCID: PMC5451175 DOI: 10.1242/dmm.029058] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects the motor system and presents with progressive muscle weakness. Most patients survive for only 2-5 years after disease onset, often due to failure of the respiratory muscles. ALS is a familial disease in ∼10% of patients, with the remaining 90% developing sporadic ALS. Over the past decade, major advances have been made in our understanding of the genetics and neuropathology of ALS. To date, around 20 genes are associated with ALS, with the most common causes of typical ALS associated with mutations in SOD1, TARDBP, FUS and C9orf72. Advances in our understanding of the genetic basis of ALS have led to the creation of different models of this disease. The molecular pathways that have emerged from these systems are more heterogeneous than previously anticipated, ranging from protein aggregation and defects in multiple key cellular processes in neurons, to dysfunction of surrounding non-neuronal cells. Here, we review the different model systems used to study ALS and discuss how they have contributed to our current knowledge of ALS disease mechanisms. A better understanding of emerging disease pathways, the detrimental effects of the various gene mutations and the causes underlying motor neuron denegation in sporadic ALS will accelerate progress in the development of novel treatments. Summary: In this Review, Ludo Van Den Bosch and colleagues discuss the different model systems for studying ALS and how they have contributed to our current understanding of the etiology and pathology of this neurodegenerative disease.
Collapse
Affiliation(s)
- Philip Van Damme
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium.,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Wim Robberecht
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium .,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| |
Collapse
|
36
|
Wang T, Cheng J, Wang S, Wang X, Jiang H, Yang Y, Wang Y, Zhang C, Liang W, Feng H. α-Lipoic acid attenuates oxidative stress and neurotoxicity via the ERK/Akt-dependent pathway in the mutant hSOD1 related Drosophila model and the NSC34 cell line of amyotrophic lateral sclerosis. Brain Res Bull 2018; 140:299-310. [PMID: 29842900 DOI: 10.1016/j.brainresbull.2018.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative disease with a progressive loss of motor neurons in the central nervous system (CNS). However, there are unsolved problems with the therapies for this disease. α-Lipoic acid (LA) is a natural, universal antioxidant capable of scavenging hydroxyl radicals as well as regenerating a series of antioxidant enzymes that has been widely used in clinical settings. This study aimed to evaluate the antioxidant and neuroprotective effects of LA in ALS cell and Drosophila models with mutant G85R and G93A hSOD1 genes. The biological effects of LA and the protein levels of several antioxidant factors were examined, as were those of phospho-Akt and phospho-ERK. Furthermore, specific inhibitors of the PI3K/Akt and MEK/ERK signaling pathways were used to analyze their effects on LA-induced antioxidant expression in vivo and in vitro. Evidences showed that the mutant hSOD1 resulted in the increased oxidative stress, abnormal antioxidant signaling and pathological behaviors in motor performance and survival compared with non-mutant hSOD1 models, treatment with LA improved motor activity and survival in transgenic flies, prevented NSC34 cells from mutant hSOD1 or H2O2 induced decreased antioxidant enzymes as well as increased ROS levels. In addition, LA regulated the expression levels of antioxidant proteins in a dose- and periodical time-dependent manner, which might be mediated by ERK/Akt pathway activation and independent from the mutant hSOD1 gene. Our observations suggest that LA exerts strong and positive antioxidant and neuroprotective effects through the activation of the ERK-Akt pathway in hSOD1 ALS models.
Collapse
Affiliation(s)
- Tianhang Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Jiling Cheng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Shuyu Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xudong Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Hongquan Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yueqing Yang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Ying Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Chunting Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Weiwei Liang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Honglin Feng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
37
|
A Docosahexaenoic Acid-Derived Pro-resolving Agent, Maresin 1, Protects Motor Neuron Cells Death. Neurochem Res 2018; 43:1413-1423. [DOI: 10.1007/s11064-018-2556-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022]
|
38
|
New structural and functional insights from in-cell NMR. Emerg Top Life Sci 2018; 2:29-38. [PMID: 33525780 DOI: 10.1042/etls20170136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022]
Abstract
In recent years, it has become evident that structural characterization would gain significantly in terms of biological relevance if framed within a cellular context, while still maintaining the atomic resolution. Therefore, major efforts have been devoted to developing Cellular Structural Biology approaches. In this respect, in-cell NMR can provide and has provided relevant contributions to the field, not only to investigate the structural and dynamical properties of macromolecules in solution but, even more relevant, to understand functional processes directly in living cells and the factors that modulate them, such as exogenous molecules, partner proteins, and oxidative stress. In this commentary, we review and discuss some of the main contributions to the understanding of protein structural and functional properties achieved by in-cell NMR.
Collapse
|
39
|
Giampietro R, Spinelli F, Contino M, Colabufo NA. The Pivotal Role of Copper in Neurodegeneration: A New Strategy for the Therapy of Neurodegenerative Disorders. Mol Pharm 2018; 15:808-820. [PMID: 29323501 DOI: 10.1021/acs.molpharmaceut.7b00841] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Copper is an essential trace element for the human body since it is a cofactor of several enzymes and proteins and plays a pivotal role in several biological functions (e.g., respiration, protection from oxidative damage, iron metabolism, etc.), also including the central nervous system development and functioning (e.g., synthesis of neurotransmitters, myelination, activation of neuropeptides, etc.). Therefore, copper dysmetabolism is associated with different toxic effects, mainly represented by oxidative stress, and it has been reported in many neurodegenerative disorders, such as Wilson's disease, Menkes disease, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This paper shows a detailed report of how copper is involved in the pathophysiology of these diseases. Moreover, a hint on novel therapeutic approaches based on restoring copper homeostasis through metal chelators will be pointed out.
Collapse
Affiliation(s)
- Roberta Giampietro
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 , Bari , Italy
| | - Francesco Spinelli
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 , Bari , Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 , Bari , Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 , Bari , Italy.,Biofordrug srl, Dipartimento di Farmacia-Scienze del Farmaco , Università degli Studi di Bari Aldo Moro , Via Orabona 4 , 70125 , Bari , Italy
| |
Collapse
|
40
|
Robinett NG, Peterson RL, Culotta VC. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. J Biol Chem 2017; 293:4636-4643. [PMID: 29259135 DOI: 10.1074/jbc.tm117.000182] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The copper-containing superoxide dismutases (SODs) represent a large family of enzymes that participate in the metabolism of reactive oxygen species by disproportionating superoxide anion radical to oxygen and hydrogen peroxide. Catalysis is driven by the redox-active copper ion, and in most cases, SODs also harbor a zinc at the active site that enhances copper catalysis and stabilizes the protein. Such bimetallic Cu,Zn-SODs are widespread, from the periplasm of bacteria to virtually every organelle in the human cell. However, a new class of copper-containing SODs has recently emerged that function without zinc. These copper-only enzymes serve as extracellular SODs in specific bacteria (i.e. Mycobacteria), throughout the fungal kingdom, and in the fungus-like oomycetes. The eukaryotic copper-only SODs are particularly unique in that they lack an electrostatic loop for substrate guidance and have an unusual open-access copper site, yet they can still react with superoxide at rates limited only by diffusion. Copper-only SOD sequences similar to those seen in fungi and oomycetes are also found in the animal kingdom, but rather than single-domain enzymes, they appear as tandem repeats in large polypeptides we refer to as CSRPs (copper-only SOD-repeat proteins). Here, we compare and contrast the Cu,Zn versus copper-only SODs and discuss the evolution of copper-only SOD protein domains in animals and fungi.
Collapse
Affiliation(s)
- Natalie G Robinett
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Ryan L Peterson
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205.
| |
Collapse
|
41
|
Khan MAI, Respondek M, Kjellström S, Deep S, Linse S, Akke M. Cu/Zn Superoxide Dismutase Forms Amyloid Fibrils under Near-Physiological Quiescent Conditions: The Roles of Disulfide Bonds and Effects of Denaturant. ACS Chem Neurosci 2017; 8:2019-2026. [PMID: 28585802 DOI: 10.1021/acschemneuro.7b00162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cu/Zn superoxide dismutase (SOD1) forms intracellular aggregates that are pathological indicators of amyotrophic lateral sclerosis. A large body of research indicates that the entry point to aggregate formation is a monomeric, metal-ion free (apo), and disulfide-reduced species. Fibril formation by SOD1 in vitro has typically been reported only for harsh solvent conditions or mechanical agitation. Here we show that monomeric apo-SOD1 in the disulfide-reduced state forms fibrillar aggregates under near-physiological quiescent conditions. Monomeric apo-SOD1 with an intact intramolecular disulfide bond is highly resistant to aggregation under the same conditions. A cysteine-free variant of SOD1 exhibits fibrillization behavior and fibril morphology identical to those of disulfide-reduced SOD1, firmly establishing that intermolecular disulfide bonds or intramolecular disulfide shuffling are not required for aggregation and fibril formation. The decreased lag time for fibril formation resulting from reduction of the intramolecular disulfide bond thus primarily reflects the decreased stability of the folded state relative to partially unfolded states, rather than an active role of free sulfhydryl groups in mediating aggregation. Addition of urea to increase the amount of fully unfolded SOD1 increases the lag time for fibril formation, indicating that the population of this species does not dominate over other factors in determining the onset of aggregation. Our results contrast with previous results obtained for agitated samples, in which case amyloid formation was accelerated by denaturant. We reconcile these observations by suggesting that denaturants destabilize monomeric and aggregated species to different extents and thus affect nucleation and growth.
Collapse
Affiliation(s)
- M. Ashhar I. Khan
- Biophysical
Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00 Lund, Sweden
- Department
of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Michal Respondek
- Biophysical
Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Sven Kjellström
- Biochemistry and Structural
Biology,
Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Shashank Deep
- Department
of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sara Linse
- Biochemistry and Structural
Biology,
Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Mikael Akke
- Biophysical
Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
42
|
The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase. Molecules 2017; 22:molecules22091429. [PMID: 28850080 PMCID: PMC6151412 DOI: 10.3390/molecules22091429] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal binding in the aggregation process of copper-zinc superoxide dismutase (SOD1) associated to amyotrophic lateral sclerosis (ALS). SOD1 is an extremely stable Cu-Zn metalloprotein in which metal binding is crucial for folding, enzymatic activity and maintenance of the native conformation. Indeed, demetalation in SOD1 is known to induce misfolding and aggregation in physiological conditions in vitro suggesting that metal binding could play a key role in the pathological aggregation of SOD1. In addition, this study includes recent advances on the role of aberrant metal coordination in promoting SOD1 aggregation, highlighting the influence of metal ion homeostasis in pathologic aggregation processes.
Collapse
|
43
|
Hanspal MA, Dobson CM, Yerbury JJ, Kumita JR. The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2762-2771. [PMID: 28711596 PMCID: PMC6565888 DOI: 10.1016/j.bbadis.2017.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving the formation of cytoplasmic aggregates by proteins including TDP-43 and SOD1, in affected cells in the central nervous system (CNS). Pathology spreads from an initial site of onset to contiguous anatomical regions. There is evidence that for disease-associated proteins, including TDP-43 and SOD1, non-native protein conformers can promote misfolding of the natively folded counterparts, and cell-to-cell transfer of pathological aggregates may underlie the spread of the disease throughout the CNS. A variety of studies have demonstrated that SOD1 is released by neuron-like cells into the surrounding culture medium, either in their free state or encapsulated in extracellular vesicles such as exosomes. Extracellular SOD1 can then be internalised by naïve cells incubated in this conditioned medium, leading to the misfolding and aggregation of endogenous intracellular SOD1; an effect that propagates over serial passages. A similar phenomenon has also been observed with other proteins associated with protein misfolding and progressive neurological disorders, including tau, α-synuclein and both mammalian and yeast prions. Conditioned media experiments using TDP-43 have been less conclusive, with evidence for this protein undergoing intercellular transfer being less straightforward. In this review, we describe the properties of TDP-43 and SOD1 and look at the evidence for their respective abilities to participate in cell-to-cell transfer via conditioned medium, and discuss how variations in the nature of cell-to-cell transfer suggests that a number of different mechanisms are involved in the spreading of pathology in ALS. Protein aggregates transfer between cells in motor neuron disease. Cell contact-independent mechanisms may be a route of transfer. SOD1 undergoes cell-to-cell transfer via conditioned medium in cell culture. It is still unclear whether TDP-43 consistently undergoes cell-to-cell transfer Differences between the two proteins may explain this observation.
Collapse
Affiliation(s)
- Maya A Hanspal
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522, Australia.
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
44
|
Srinivasan E, Rajasekaran R. Exploring the cause of aggregation and reduced Zn binding affinity by G85R mutation in SOD1 rendering amyotrophic lateral sclerosis. Proteins 2017; 85:1276-1286. [PMID: 28321933 DOI: 10.1002/prot.25288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/08/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disorder is characterized by the degeneration of upper and lower motor neuron. ALS occurs due to various notably prominent missense mutations, in gene encoding Cu-Zn superoxide dismutase (SOD1) thereby leading to aggregation, dysfunction and reduced Zn binding affinity. In this study, one such mutation, G85R was explored in comparison with wild type SOD1, using discrete molecular dynamics (DMD). Accordingly, the conformational changes were significantly observed in mutant SOD1, through various geometrical parameters, which substantiated the difference in conformational deviation, flexibility and compactness, thus stipulating a root cause for aggregation. Followed by, analysis of essential dynamics further authenticated the cause behind the protein dysfunction. In particular, the high content of beta sheet with structural deviations, down to dysfunction was established in mutant as compared to wild type, while passing through secondary structure analysis. Subsequently, the deviation of distance in Zn binding residues was distinctly portrayed in mutant as compared to wild type, thus confirming the cause of reduced Zn binding affinity. In addition, the steered molecular dynamics analysis also authenticated the above results indicating the reduced Zn binding affinity in the mutant as compared to that of the wild type. Hence, this work revealed the theoretical mechanism to unravel the mutational effects of cofactor dependent protein. Proteins 2017; 85:1276-1286. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
45
|
Mateju D, Franzmann TM, Patel A, Kopach A, Boczek EE, Maharana S, Lee HO, Carra S, Hyman AA, Alberti S. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J 2017; 36:1669-1687. [PMID: 28377462 PMCID: PMC5470046 DOI: 10.15252/embj.201695957] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Stress granules (SG) are membrane‐less compartments involved in regulating mRNAs during stress. Aberrant forms of SGs have been implicated in age‐related diseases, such as amyotrophic lateral sclerosis (ALS), but the molecular events triggering their formation are still unknown. Here, we find that misfolded proteins, such as ALS‐linked variants of SOD1, specifically accumulate and aggregate within SGs in human cells. This decreases the dynamics of SGs, changes SG composition, and triggers an aberrant liquid‐to‐solid transition of in vitro reconstituted compartments. We show that chaperone recruitment prevents the formation of aberrant SGs and promotes SG disassembly when the stress subsides. Moreover, we identify a backup system for SG clearance, which involves transport of aberrant SGs to the aggresome and their degradation by autophagy. Thus, cells employ a system of SG quality control to prevent accumulation of misfolded proteins and maintain the dynamic state of SGs, which may have relevance for ALS and related diseases.
Collapse
Affiliation(s)
- Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Titus M Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Avinash Patel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrii Kopach
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Edgar E Boczek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Shovamayee Maharana
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hyun O Lee
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
46
|
Chung WH. Unraveling new functions of superoxide dismutase using yeast model system: Beyond its conventional role in superoxide radical scavenging. J Microbiol 2017; 55:409-416. [PMID: 28281199 DOI: 10.1007/s12275-017-6647-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 01/16/2023]
Abstract
To deal with chemically reactive oxygen molecules constantly threatening aerobic life, cells are readily equipped with elaborate biological antioxidant systems. Superoxide dismutase is a metalloenzyme catalytically eliminating superoxide radical as a first-line defense mechanism against oxidative stress. Multiple different SOD isoforms have been developed throughout evolution to play distinct roles in separate subcellular compartments. SOD is not essential for viability of most aerobic organisms and intriguingly found even in strictly anaerobic bacteria. Sod1 has recently been known to play important roles as a nuclear transcription factor, an RNA binding protein, a synthetic lethal interactor, and a signal modulator in glucose metabolism, most of which are independent of its canonical function as an antioxidant enzyme. In this review, recent advances in understanding the unconventional role of Sod1 are highlighted and discussed with an emphasis on its genetic crosstalk with DNA damage repair/checkpoint pathways. The budding yeast Saccharomyces cerevisiae has been successfully used as an efficient tool and a model organism to investigate a number of novel functions of Sod1.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Republic of Korea. .,Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea.
| |
Collapse
|
47
|
Genung NE, Guckian KM. Small Molecule Inhibition of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4). PROGRESS IN MEDICINAL CHEMISTRY 2017; 56:117-163. [PMID: 28314411 DOI: 10.1016/bs.pmch.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, interleukin-1 receptor-associated kinase 4, IRAK4, has become an attractive target for many medicinal chemistry programmes. Target inhibition is of potential therapeutic value in areas including autoimmune disorders, cancer, inflammatory diseases, and possibly neurodegenerative diseases. Results from high-throughput screening efforts have led, in conjunction with structure-based drug design, to the identification of highly potent and selective small molecule IRAK4 inhibitors from many diverse chemical series. In vitro and in vivo studies with entities from distinct structural classes have helped elucidate the downstream pharmacological responses associated with IRAK4 inhibition as a proof of concept in disease models, leading to the recent initiation of human clinical trials. Within this review, we will highlight the considerable effort by numerous groups dedicated to the development of small molecule IRAK4 inhibitors for the treatment of human disease.
Collapse
|
48
|
Srinivasan E, Rajasekaran R. Computational investigation of the human SOD1 mutant, Cys146Arg, that directs familial amyotrophic lateral sclerosis. MOLECULAR BIOSYSTEMS 2017. [DOI: 10.1039/c7mb00106a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Molecular dynamics simulations along with the computational predictions used to assess the protein structural characterization as well as the conformational preferences of the monomeric native and mutant SOD1.
Collapse
Affiliation(s)
- E. Srinivasan
- Bioinformatics Lab
- Department of Biotechnology
- School of Bio Sciences and Technology
- VIT University
- Vellore 632014
| | - R. Rajasekaran
- Bioinformatics Lab
- Department of Biotechnology
- School of Bio Sciences and Technology
- VIT University
- Vellore 632014
| |
Collapse
|
49
|
Rossi S, Cozzolino M, Carrì MT. Old versus New Mechanisms in the Pathogenesis of ALS. Brain Pathol 2016; 26:276-86. [PMID: 26779612 DOI: 10.1111/bpa.12355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is recognized as a very complex disease. As we have learned in the past 20 years from studies in patients and in models based on the expression of mutant SOD1, ALS is not a purely motor neuron disease as previously thought. While undoubtedly motor neurons are lost in patients, a number of alterations in those cell-types that interact functionally with motor neurons (astrocytes, microglia, muscle fibers, oligodendrocytes) take place even long before onset of symptoms. At the same time, disturbance of several, only partly inter-related physiological functions play some role in the onset and progression of the disease. Traditionally, mitochondrial damage and oxidative stress, excitotoxicity, neuroinflammation, altered axonal transport, ER stress, protein aggregation and defective removal of toxic proteins have been considered as key factors in the pathogenesis of ALS, with the relatively recent addition of disturbances in RNA metabolism. This complexity makes the search for an effective treatment extremely difficult and prompts further studies to reveal other possible, previously unappreciated aspects of the pathogenesis of ALS. In this review, we focus on previous knowledge on ALS mechanisms as well as new facets emerging from studies on genetic ALS patients and models that may both provide precious information for a novel therapeutic approach.
Collapse
Affiliation(s)
- Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.,Lab of Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Maria Teresa Carrì
- Lab of Neurochemistry, Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Biology, University of Rome Tor Vergata
| |
Collapse
|
50
|
Jiang HZ, Wang SY, Yin X, Jiang HQ, Wang XD, Wang J, Wang TH, Qi Y, Yang YQ, Wang Y, Zhang CT, Feng HL. Downregulation of Homer1b/c in SOD1 G93A Models of ALS: A Novel Mechanism of Neuroprotective Effect of Lithium and Valproic Acid. Int J Mol Sci 2016; 17:ijms17122129. [PMID: 27999308 PMCID: PMC5187929 DOI: 10.3390/ijms17122129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Background: Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important roles in neurological diseases. In this study, we explored whether Homer1b/c was involved in SOD1 mutation-linked ALS. Results: In vitro studies showed that the SOD1 G93A mutation induced an increase of Homer1b/c expression at both the mRNA and protein levels in NSC34 cells. Knockdown of Homer1b/c expression using its short interfering RNA (siRNA) (si-Homer1) protected SOD1 G93A NSC34 cells from apoptosis. The expressions of Homer1b/c and apoptosis-related protein Bax were also suppressed, while Bcl-2 was increased by lithium and valproic acid (VPA) in SOD1 G93A NSC34 cells. In vivo, both the mRNA and protein levels of Homer1b/c were increased significantly in the lumbar spinal cord in SOD1 G93A transgenic mice compared with wild type (WT) mice. Moreover, lithium and VPA treatment suppressed the expression of Homer1b/c in SOD1 G93A mice. Conclusion: The suppression of SOD1 G93A mutation-induced Homer1b/c upregulation protected ALS against neuronal apoptosis, which is a novel mechanism of the neuroprotective effect of lithium and VPA. This study provides new insights into pathogenesis and treatment of ALS.
Collapse
Affiliation(s)
- Hai-Zhi Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Shu-Yu Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xiang Yin
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Hong-Quan Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xu-Dong Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Jing Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Tian-Hang Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Yan Qi
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Yue-Qing Yang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Ying Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Chun-Ting Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Hong-Lin Feng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|