1
|
Fukuda S, Niimi Y, Hirasawa Y, Manyeza ER, Garner CE, Southan G, Salzman AL, Prough DS, Enkhbaatar P. Modulation of oxidative and nitrosative stress attenuates microvascular hyperpermeability in ovine model of Pseudomonas aeruginosa sepsis. Sci Rep 2021; 11:23966. [PMID: 34907252 PMCID: PMC8671546 DOI: 10.1038/s41598-021-03320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
In sepsis, microvascular hyperpermeability caused by oxidative/nitrosative stress (O&NS) plays an important role in tissue edema leading to multi-organ dysfunctions and increased mortality. We hypothesized that a novel compound R-107, a modulator of O&NS, effectively ameliorates the severity of microvascular hyperpermeability and preserves multi-organ function in ovine sepsis model. Sepsis was induced in twenty-two adult female Merino sheep by intravenous infusion of Pseudomonas aeruginosa (PA) (1 × 1010 CFUs). The animals were allocated into: 1) Control (n = 13): intramuscular injection (IM) of saline; and 2) Treatment (n = 9): IM of 50 mg/kg R-107. The treatment was given after the PA injection, and monitored for 24-h. R-107 treatment significantly reduced fluid requirement (15-24 h, P < 0.05), net fluid balance (9-24 h, P < 0.05), and water content in lung/heart/kidney (P = 0.02/0.04/0.01) compared to control. R-107 treatment significantly decreased lung injury score/modified sheep SOFA score at 24-h (P = 0.01/0.04), significantly lowered arterial lactate (21-24 h, P < 0.05), shed syndecan-1 (3-6 h, P < 0.05), interleukin-6 (6-12 h, P < 0.05) levels in plasma, and significantly attenuated lung tissue 3-nitrotyrosine and vascular endothelial growth factor-A expressions (P = 0.03/0.002) compared to control. There was no adverse effect in R-107 treatment. In conclusion, modulation of O&NS by R-107 reduced hyperpermeability markers and improved multi-organ function.
Collapse
Affiliation(s)
- Satoshi Fukuda
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.411731.10000 0004 0531 3030Department of General Medicine, International University of Health and Welfare, Shioya Hospital, Tochigi, 329-2145 Japan
| | - Yosuke Niimi
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.410818.40000 0001 0720 6587Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, Tokyo, 162-8666 Japan
| | - Yasutaka Hirasawa
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA ,grid.136304.30000 0004 0370 1101Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
| | - Ennert R. Manyeza
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA
| | | | | | | | - Donald S. Prough
- grid.176731.50000 0001 1547 9964Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX 77555 USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
2
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
3
|
Improvement of mesenchymal stromal cells and their derivatives for treating acute liver failure. J Mol Med (Berl) 2019; 97:1065-1084. [DOI: 10.1007/s00109-019-01804-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/28/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
|
4
|
Meidan E, Kolesnikov Y, Tirosh O. High Fat Diets Composed of Palm Stearin and Olive Oil Equally Exacerbate Liver Inflammatory Damage and Metabolic Stress in Mice. Mol Nutr Food Res 2018; 62:e1700915. [PMID: 29733507 DOI: 10.1002/mnfr.201700915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/22/2018] [Indexed: 12/15/2022]
Abstract
SCOPE People with fatty liver could be subject to acute infections such as sepsis. The aim of the study is to evaluate the effect of high fat diets (HFD) of olive oil and palm stearin on liver inflammation induced by lipopolysaccharides (LPS). METHODS AND RESULTS C57BL/6J male mice were treated with high fat diets with different sources of oils: palm stearin and olive oil for 8 weeks followed by LPS injection. The proinflammatory effect of olive oil was also studied using gavage treatment and IP injection of LPS. Animals fed with HFDs showed an increase in body weight, elevated blood glucose levels, and fatty liver phenotype. HFDs aggravated the effect of LPS treatment to induce inflammatory response compared to low fat diet (LFD) effect. Following HFD supplementation, LPS induced hyperinsulinemia, more liver damage than in animals that consumed LFD. In addition, both gavage and long-term feeding with high lipids in the presence of LPS resulted in inhibition of gluconeogenic genes expression. CONCLUSION HFDs of both monounsaturated and saturated fat potentiated liver inflammation induced by LPS treatment indicate that the total amount of fat consumed is the main proinflammatory factor rather than the type of fat.
Collapse
Affiliation(s)
- Elena Meidan
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yula Kolesnikov
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
5
|
Hypoxic Signaling and Cholesterol Lipotoxicity in Fatty Liver Disease Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2548154. [PMID: 29955245 PMCID: PMC6000860 DOI: 10.1155/2018/2548154] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Cholesterol is the only lipid whose absorption in the gastrointestinal tract is limited by gate-keeping transporters and efflux mechanisms, preventing its rapid absorption and accumulation in the liver and blood vessels. In this review, I explored the current data regarding cholesterol accumulation in liver cells and key mechanisms in cholesterol-induced fatty liver disease associated with the activation of deleterious hypoxic and nitric oxide signal transduction pathways. Although nonalcoholic fatty liver disease (NAFLD) affects both obese and nonobese individuals, the mechanism of NAFLD progression in lean individuals with healthy metabolism is puzzling. Lean NAFLD individuals exhibit normal metabolic responses, implying that liver damage is not associated with impaired metabolism per se and that direct lipotoxic effects are crucial for disease progression. Several redox and oxidant signaling pathways involving cholesterol are at play in fatty liver disease development. These include impairment of the mitochondrial and lysosomal function by cholesterol loading of the inner-cell membranes; formation of cholesterol crystals and hepatocyte degradation; and crown-like structures surrounding degrading hepatocytes, activating Kupffer cells, and evoking inflammation. The current review focuses on the induction of liver inflammation, fibrosis, and steatosis by free cholesterol via the hypoxia-inducible factor 1α (HIF-1α), a main oxygen-sensing transcription factor involved in all stages of NAFLD. Cholesterol loading in hepatocytes can result in chronic HIF-1α activity because of the decreased oxygen availability and excessive production of nitric oxide and mitochondrial reactive oxygen species.
Collapse
|
6
|
Qin CC, Liu YN, Hu Y, Yang Y, Chen Z. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J Gastroenterol 2017; 23:3043-3052. [PMID: 28533661 PMCID: PMC5423041 DOI: 10.3748/wjg.v23.i17.3043] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/11/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Macrophage inflammatory protein (MIP)-2 is one of the CXC chemokines and is also known as chemokine CXC ligand (CXCL2). MIP-2 affects neutrophil recruitment and activation through the p38 mitogen-activated-protein-kinase-dependent signaling pathway, by binding to its specific receptors, CXCR1 and CXCR2. MIP-2 is produced by a variety of cell types, such as macrophages, monocytes, epithelial cells, and hepatocytes, in response to infection or injury. In liver injury, activated Kupffer cells are known as the major source of MIP-2. MIP-2-recruited and activated neutrophils can accelerate liver inflammation by releasing various inflammatory mediators. Here, we give a brief introduction to the basic molecular and cellular sources of MIP-2, and focus on its physiological and pathological functions in acute liver injury induced by concanavalin A, lipopolysaccharides, irradiation, ischemia/reperfusion, alcohol, and hypoxia, and hepatectomy-induced liver regeneration and tumor colorectal metastasis. Further understanding of the regulatory mechanisms of MIP-2 secretion and activation may be helpful to develop MIP-2-targeted therapeutic strategies to prevent liver inflammation.
Collapse
|
7
|
Deleterious effect of n-3 polyunsaturated fatty acids in non-alcoholic steatohepatitis in the fat-1 mouse model. CLINICAL NUTRITION EXPERIMENTAL 2017. [DOI: 10.1016/j.yclnex.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Anavi S, Hahn-Obercyger M, Margalit R, Madar Z, Tirosh O. A novel antihypoglycemic role of inducible nitric oxide synthase in liver inflammatory response induced by dietary cholesterol and endotoxemia. Antioxid Redox Signal 2013; 19:1889-901. [PMID: 23697659 PMCID: PMC3852347 DOI: 10.1089/ars.2012.5157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS The current study aim was to elucidate the antihypoglycemic role and mechanism of inducible nitric oxide synthase (iNOS) under inflammatory stress. METHODS Liver inflammatory stress was induced in wild-type (WT) and iNOS-knockout (iNOS(-/-)) mice by lipopolysaccharide (LPS) (5 mg/kg) with and without the background of nonalcoholic steatohepatitis (NASH)-Induced by high cholesterol diet (HCD, 6 weeks). RESULTS HCD led to steatohepatitis in WT and iNOS(-/-) mice. LPS administration caused marked liver inflammatory damage only in cholesterol-fed mice, which was further exacerbated in the absence of iNOS. Glucose homeostasis was significantly impaired and included fatal hypoglycemia and inhibition of glycogen decomposition. In iNOS(-/-) hypoxia-inducible factor-1 (HIF1), signaling was impaired compared to control WT. Using hydrodynamic gene transfer method HIF1α was expressed in the livers of iNOS(-/-) mice, and significantly ameliorated cholesterol and LPS-induced liver damage. WT mice overexpressing HIF1α exhibited higher blood glucose levels and lower glycogen contents after LPS injection. Conversely, induction of HIF1α was not effective in preventing LPS-induced glucose lowering effect in iNOS(-/-) mice. The critical role of NO signaling in hepatocytes glucose output mediated by HIF1 pathway was also confirmed in vitro. Results also demonstrated increased oxidative stress and reduced heme oxygenase-1 mRNA in the livers of iNOS(-/-) mice. Furthermore, the amounts of plasma tumor necrosis factor-α (TNFα) and intrahepatic TNFα mRNA were significantly elevated in the absence of iNOS. INNOVATION AND CONCLUSION These data highlight the essential role of iNOS in the glycemic response to LPS in NASH conditions and argues for the beneficial effects of iNOS.
Collapse
Affiliation(s)
- Sarit Anavi
- 1 The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem , Rehovot, Israel
| | | | | | | | | |
Collapse
|
9
|
Lecithin/cholesterol acyltransferase modulates diet-induced hepatic deposition of triglycerides in mice. J Nutr Biochem 2013; 24:567-77. [DOI: 10.1016/j.jnutbio.2012.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/10/2012] [Accepted: 02/20/2012] [Indexed: 11/20/2022]
|
10
|
Aharoni-Simon M, Anavi S, Beifuss U, Madar Z, Tirosh O. Nitric oxide, can it be only good? Increasing the antioxidant properties of nitric oxide in hepatocytes by YC-1 compound. Nitric Oxide 2012; 27:248-56. [PMID: 22955014 DOI: 10.1016/j.niox.2012.08.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 08/05/2012] [Accepted: 08/21/2012] [Indexed: 12/25/2022]
Abstract
The aim of the study was to evaluate the effect of Nitric oxide (NO) on redox changes and fat accumulation in hepatocytes. AML-12 hepatocytes were exposed to the NO donor Diethylenetriamine-NONOate (DETA-NO). DETA-NO led to a dose- and time-dependent increase in lipid accumulation in the cells, measured by Nile red fluorescence. Exposure of the cells to 1mM DETA-NO for 24h increased reactive oxygen species production, mainly peroxides. At the same time, NO induced elevation of reduced glutathione (GSH) and a mild activation of the antioxidant transcription factors Hypoxia-inducible factor 1α (HIF1α) and NF-E2 related factor 2 (Nrf-2). We used 100 μM YC-1 to inhibit HIF1α activity and induce activation of soluble Guanylate Cyclase (sGC). YC-1 alone did not affect fat accumulation, and only moderately increased the expression of Nrf-2-targeted genes Heme oxygenase 1 (Hmox1), NAD(P)H dehydrogenase (quinone 1) (Nqo1) and Glutathione S-transferase α1 (Gstα1). However, YC-1 abolished the negative effect of NO on fat accumulation when administered together. Strikingly, YC-1 potentiated the effect of NO on Nrf-2 activation, thus increasing dramatically the antioxidant properties of NO. Moreover, YC-1 intensified the effect of NO on the expression of peroxisome-proliferator-activated receptor-gamma co-activator 1α (PGC1α) and mitochondrial biogenesis markers. This study suggests that YC-1 may shift the deleterious effects of NO into the beneficial ones, and may improve the antioxidant properties of NO.
Collapse
Affiliation(s)
- Michal Aharoni-Simon
- The School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
11
|
Abstract
Studies in animals and human subjects indicate that gut-derived bacterial endotoxins may play a critical role in the development of non-alcoholic fatty liver disease (NAFLD). In the present study, we investigated if the liver is also sensitised by other microbial components during the onset of fructose-induced steatosis in a mouse model. C57BL/6 mice were either fed with 30 % fructose solution or tap water (control) with or without antibiotics for 8 weeks. Expression of toll-like receptors (TLR)1-9, TNF-α, inducible NO synthase (iNOS), myeloid differentiation factor 88 (MyD88) and number of F4/80 positive cells in the liver were assessed. Occludin protein, DNA of microbiota in the small and large intestine and retinol binding protein 4 (RBP4) in plasma were analysed using Western blot, DNA fingerprinting and ELISA, respectively. F4/80 positive cells were determined by immunohistochemistry. The accumulation of TAG found in the livers of fructose-fed mice was associated with a significant induction of TLR 1-4 and 6-8. Plasma RBP4 concentration and hepatic mRNA expression levels of TNF-α, iNOS, MyD88 and number of F4/80 positive cells of fructose-fed animals were significantly higher than those of controls; however, these effects of fructose were attenuated in antibiotic-treated mice. Whereas protein concentration of occludin was lower in the duodenum of fructose-treated mice, no systematic alterations of microbiota were found in this part of the intestine. Taken together, these data support the hypothesis that (1) an increased intestinal translocation of microbial components and (2) an increased number of F4/80 positive cells and induction of several TLR and dependent pathways (e.g. MyD88 and iNOS) may be involved in the onset of fructose-induced NAFLD.
Collapse
|
12
|
Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. J Transl Med 2011; 91:1018-28. [PMID: 21464822 DOI: 10.1038/labinvest.2011.55] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Accumulating evidence indicates that mitochondria have a key role in non-alcoholic fatty liver disease (NAFLD). C57BL/6J mice were fed a choline-deficient, ethionine-supplemented (CDE) diet. Histological studies demonstrated accumulation of fat vacuoles in up to 90% of hepatocytes in mice fed the CDE diet for 14 days. In addition, a decrease in mitochondrial levels, together with an increase in superoxide radicals' levels were observed, indicating elevation of oxidative stress in hepatocytes. ATP levels were decreased in livers from CDE-fed mice after overnight fasting. This was accompanied by a compensative and significant increase in peroxisome-proliferator-activated receptor-γ coactivator 1α (PGC1α) mRNA levels in comparison to control livers. However, there was a reduction in PGC1α protein levels in CDE-treated mice. Moreover, the expression of mitochondrial biogenesis genes nuclear respiratory factor 1 (NRF-1), mitochondrial transcription factor A (TFAM), mitochondrial transcription factor B1 (TFB1M) and mitochondrial transcription factor B2 (TFB2M), which are all regulated by PGC1α activity, remained unchanged in fasted CDE-treated mice. These results indicate impaired activity of PGC1α. The impaired activity was further confirmed by chromatin immunoprecipitation analysis, which demonstrated decreased interaction of PGC1α with promoters containing NRF-1 and NRF-2 response elements in mice fed the CDE diet. A decrease in PGC1α ability to activate the expression of the gluconeogenic gene phosphoenol-pyruvate carboxykinase was also observed. This study demonstrates, for the first time, that attenuated mitochondrial biogenesis in steatotic livers is associated with impaired biological activity of PGC1α.
Collapse
|
13
|
Schejter YD, Turvall E, Ackerman Z. Characteristics of patients with sulphonurea-induced hypoglycemia. J Am Med Dir Assoc 2010; 13:234-8. [PMID: 21450199 DOI: 10.1016/j.jamda.2010.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM Sulphonylurea (SU) agents continue to be a cornerstone of the therapy of type 2 diabetes mellitus (T2DM). Hypoglycemia is the most dangerous side effect of SU. Identifying the characteristics of patients with SU-induced hypoglycemia (SUIH) may help in reducing its frequency. METHODS All consecutive admissions of patients with SUIH, between 2000 and 2008, were retrospectively reviewed. RESULTS Over the study period, 4702 patients with type 2 diabetes mellitus were admitted to the department of medicine. Of these, 155 patients were admitted because of SUIH. Most of these patients were elderly, had multiple comorbid situations, and were taking multiple medications. Almost a third of the patients had a history of recent changes in the use of their medications. Various infectious complications (urinary, lung, skin, and peritoneal) occurred in 43% of patients. Renal failure was a frequent finding at admission (44% of patients had creatinine plasma levels > 120 μmol/L). Poor oral intake before admission was reported by 31% of patients. Markers of malnutrition (low serum levels of albumin, iron, vitamin B-12, and folic acid) were frequently found in most patients. Mean hemoglobin A1C levels were in the low abnormal levels. A major vascular event during hospitalization co-occurred in 11% of patients. Three patients died during the hospital admission for SUIH. CONCLUSIONS Elderly fragile patients with multiple comorbid situations including renal failure and tight glycemic control are prone to develop SUIH. Sulphonylurea agents should be avoided in such patients. An episode of SUIH should be considered as an alarming prognostic marker.
Collapse
Affiliation(s)
- Yael Dinur Schejter
- Department of Medicine, Hadassah-Hebrew University, Medical Center, Mount Scopus Campus, Jerusalem, Israel
| | | | | |
Collapse
|