1
|
Chakraborty T, Polley S, Ray Chaudhuri N, Sinha D, Bhattacharjee A, Saha P, Sau K, Ghosh Dastidar S, Sau S. A staphylococcal capsule-producing enzyme that unfolds via multiple intermediates predominantly exists as the trimers at low concentrations. J Biomol Struct Dyn 2024:1-15. [PMID: 39671229 DOI: 10.1080/07391102.2024.2438364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/22/2024] [Indexed: 12/14/2024]
Abstract
CapG, an enzyme expressed by Staphylococcus aureus, catalyzes an epimerization reaction to synthesize N-acetyl-L-fucosamine, a constituent of capsule involved in pathogenesis. This protein has two domains, exists as the homohexamers in the solution, and usually produces products at hundred-nanomolar concentrations. To determine the folding-unfolding mechanism and the oligomeric form of CapG, particularly at low concentrations, we have investigated a recombinant CapG (rCapG) using different probes. The results show that rCapG in the aqueous solution is well-structured and exists as a mixture of different homo-oligomers such as dimer, trimer, tetramer, and hexamer. A considerable amount of rCapG also remained as the monomers at 0.5-5 µM concentrations. However, its trimeric forms are predominant at 5-100 µM concentrations. The formation of trimers is induced at higher concentrations of rCapG. Besides, rCapG at 0-7 M urea was reversibly unfolded by forming three structurally dissimilar intermediates. The first intermediate was possibly formed by the partial disruption of native rCapG trimers to dimers and monomers, whereas the second intermediate was likely produced due to the swelling and additional dissociation of the first intermediate. Further dissociation/swelling may have generated a third intermediate from the second intermediate. Additionally, both domains of rCapG started unfolding at the same urea concentrations. However, its C-terminal domain mostly completed unfolding at 7 M urea. Collectively, the study has provided new clues about the oligomeric state and the folding mechanism of CapG and also set up a foundation for discovering new anti-CapG molecules in the future.
Collapse
Affiliation(s)
- Tushar Chakraborty
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | | | - Debasmita Sinha
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Anwesha Bhattacharjee
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Pramita Saha
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | | | - Subrata Sau
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Han J, Andrée L, Deng D, van Oirschot BAJA, Plachokova AS, Leeuwenburgh SCG, Yang F. Biofunctionalization of dental abutments by a zinc/chitosan/gelatin coating to optimize fibroblast behavior and antibacterial properties. J Biomed Mater Res A 2024; 112:1873-1892. [PMID: 38725302 DOI: 10.1002/jbm.a.37734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 09/03/2024]
Abstract
Tightly sealed peri-implant gingival tissue provides a barrier against oral bacterial invasion, protecting the alveolar bone and maintaining long-term implant survival. To investigate if zinc can enhance the integration between peri-implant gingival tissue and abutment surface, we herein present novel zinc/chitosan/gelatin (Zn/CS/Gel) coatings prepared using the electrophoretic deposition (EPD) technique. The effect of these coatings on human gingival fibroblasts (hGFs) was investigated by culturing these cells on top of the EPD coatings. Surface characterization demonstrated that Zn2+ were released in a sustained and pH-responsive manner. The preclinical cell culture evaluation of these coatings indicated that the zinc-containing coatings enhanced cell migration, adhesion and collagen secretion of hGFs. Moreover, the zinc-containing coatings exhibited antibacterial efficacy by inhibiting the growth of Porphyromonas gingivalis and reducing attachment of Staphylococcus aureus. Notably, zinc-free CS/Gel coatings prevented attachment of P. gingivalis as well. The coatings were also shown to be cytocompatible with epithelial cells and osteoblasts, which are other relevant cell types which surround dental implants after clinical placement. Based on our findings, it can be concluded that Zn-containing coatings hold promise to enhance the adhesion of gingival tissue to the implant surface, which may potentially contribute to the formation of a robust peri-implant soft sealing counteracting bacterial invasion.
Collapse
Affiliation(s)
- Jing Han
- Department of Dentistry - Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Lea Andrée
- Department of Dentistry - Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart A J A van Oirschot
- Department of Dentistry - Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Adelina S Plachokova
- Department of Dentistry - Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry - Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry - Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Cullum E, Perez-Betancourt Y, Shi M, Gkika E, Schneewind O, Missiakas D, Golovkina T. Deficiency in non-classical major histocompatibility class II-like molecule, H2-O confers protection against Staphylococcus aureus in mice. PLoS Pathog 2024; 20:e1012306. [PMID: 38843309 PMCID: PMC11185455 DOI: 10.1371/journal.ppat.1012306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024] Open
Abstract
Staphylococcus aureus is a human-adapted pathogen that replicates by asymptomatically colonizing its host. S. aureus is also the causative agent of purulent skin and soft tissue infections as well as bloodstream infections that result in the metastatic seeding of abscess lesions in all organ tissues. Prolonged colonization, infection, disease relapse, and recurrence point to the versatile capacity of S. aureus to bypass innate and adaptive immune defenses as well as the notion that some hosts fail to generate protective immune responses. Here, we find a genetic trait that provides protection against this pathogen. Mice lacking functional H2-O, the equivalent of human HLA-DO, inoculated with a mouse-adapted strain of S. aureus, efficiently decolonize the pathogen. Further, these decolonized animals resist subsequent bloodstream challenge with methicillin-resistant S. aureus. A genetic approach demonstrates that T-cell dependent B cell responses are required to control S. aureus colonization and infection in H2-O-deficient mice. Reduced bacterial burdens in these animals correlate with increased titers and enhanced phagocytic activity of S. aureus-specific antibodies. H2-O negatively regulates the loading of high affinity peptides on major histocompatibility class II (MHC-II) molecules. Thus, we hypothesize that immune responses against S. aureus are derepressed in mice lacking H2-O because more high affinity peptides are presented by MHC-II. We speculate that loss-of-function HLA-DO alleles may similarly control S. aureus replication in humans.
Collapse
Affiliation(s)
- Emily Cullum
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
| | - Yunys Perez-Betancourt
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois, United States of America
| | - Miaomiao Shi
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois, United States of America
| | - Eirinaios Gkika
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois, United States of America
| | - Tatyana Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
4
|
Li Y, Hu Y, Kamal Z, Chen Y, Xue X, Yao S, Zhao H, Jia M, Li Y, Wang Z, Li M, Chen Z. Optimization of Dendritic Polypeptide Delivery System for Antisense Antibacterial Agents Targeting ftsZ. ACS OMEGA 2024; 9:20966-20975. [PMID: 38764644 PMCID: PMC11097154 DOI: 10.1021/acsomega.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
There is an urgent requirement for a novel treatment strategy for drug-resistant Staphylococcus aureus (S. aureus) infection. Antisense antimicrobials are promising antimicrobials, and efficient drug delivery systems are necessary for the further development of antisense antimicrobials. To develop new antisense drugs and further improve delivery efficiency and safety, we designed and screened new antisense sequences and optimized dendritic polypeptide nanoparticles (DP-AD) discovered in previous studies. The N/P ratio is optimized from 8:1 to 6:1, and the positive charge number of the optimized DP-AD is studied comprehensively. The results show that the N/P ratio and positive charge number have no significant effect on the particle size distribution and transport efficiency of DP-AD. Reducing the N/P ratio can significantly reduce the cytotoxicity of DP-AD, but it does not affect its delivery efficiency and antibacterial activity. However, in drug-resistant strains, the antibacterial activity of DP-AD76:1 with 10 positive charges is higher than that of DP-AD86:1 with 8 positive charges. Our research discovered a novel ASOs targeting ftsZ and concluded that DP-AD76:1 with 10 positive charges was the optimal choice at the current stage, which provided a promising strategy for the treatment of drug-resistant S. aureus.
Collapse
Affiliation(s)
- Yaoyao Li
- College
of Pharmacy, Shaanxi University of Chinese
Medicine, Xi’an 712046, China
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Yue Hu
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Zul Kamal
- Department
of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18000, Khyber Pakhtunkhwa, Paksitan
- School
of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yamiao Chen
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Xiaoyan Xue
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Shuting Yao
- College
of Pharmacy, Shaanxi University of Chinese
Medicine, Xi’an 712046, China
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Hui Zhao
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Min Jia
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Yuan Li
- Medical
College, Xi’an Peihua University, Xi’an 710061, China
| | - Zheng Wang
- College
of Pharmacy, Shaanxi University of Chinese
Medicine, Xi’an 712046, China
| | - Mingkai Li
- College
of Pharmacy, Shaanxi University of Chinese
Medicine, Xi’an 712046, China
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| | - Zhou Chen
- Department
of Pharmacology, School of Pharmacy, The
Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
5
|
Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J Basic Microbiol 2024; 64:e2300579. [PMID: 38308076 DOI: 10.1002/jobm.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sree Haryini
- Department of Biomedical Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Fagheei Aghmiyuni Z, Saderi H, Owlia P, Saidi N. Evaluation of the Effect of Lactobacillus acidophilus ATCC 4356 Bacteriocin against Staphylococcus aureus. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4119960. [PMID: 38559901 PMCID: PMC10980545 DOI: 10.1155/2024/4119960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Background Lactobacillus acidophilus is lactic acid bacteria that produce bacteriocins. Bacteriocins are antimicrobial peptides or proteins that exhibit activity against closely related bacteria. The aim of this study was to determine the effect of L. acidophilus ATCC 4356 bacteriocin against Staphylococcus aureus. Material and Methods. We used four different phenotypic methods for antimicrobial activities against two standard strains: methicillin-resistant S. aureus (MRSA) ATCC 33591 and methicillin-susceptible S. aureus (MSSA) ATCC 25923. The methods were (1) agar well diffusion, (2) overlay soft agar, (3) paper disk, and (4) modification of punch hole. The ammonium sulfate method was used to concentrate crude bacteriocin, and ultrafiltration and dialysis tubes were used to remove ammonium sulfate from the bacteriocins. Each method was repeated in triplicate. Result L. acidophilus ATCC 4356 showed antimicrobial activity against both MRSA and MSSA standard strains only by the overlay soft agar method and not by the agar well diffusion, punch hole modification, and paper disk methods. No antimicrobial effects were observed in crude bacteriocins concentrated. Conclusion The growth inhibition of S. aureus in overlay soft agar method may be due to the production of bacteriocin-like substances. The overlay soft agar method is a qualitative test, so there is a need for further study to optimize the conditions for the production of bacteriocin-like substances in the culture supernatant and precise comparison between the inhibitory activity and pheromone secretion of different strains.
Collapse
Affiliation(s)
| | - Horieh Saderi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Navid Saidi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Kirkliauskienė A, Kriščiūnas J, Miciulevičienė J, Radzišauskienė D, Kačergius T, Bratchikov M, Kaplerienė L. Antimicrobial Resistance and the Prevalence of the Panton-Valentine Leukocidin Gene among Clinical Isolates of Staphylococcus aureus in Lithuania. Pol J Microbiol 2024; 73:21-28. [PMID: 38437463 PMCID: PMC10911699 DOI: 10.33073/pjm-2024-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 03/06/2024] Open
Abstract
This study aimed to determine resistance to antimicrobials of Staphylococcus aureus strains isolated from clinical specimens in Lithuanian hospitals and to identify the genes conferring resistance and virulence. The study was carried out from June 2019 to September 2021. S. aureus strains were isolated from skin, soft tissues, blood, lower respiratory tract, urine and other specimens. Antibiotic susceptibility testing was performed using the disc diffusion method according to EUCAST guidelines. All isolates were analyzed for detection of the ermA, ermC, mecA, mecC, tetK, tetM, and lukF-PV genes by multiplex real-time PCR. The 16S rRNA coding sequence was applied as an internal PCR control. Altogether, 745 S. aureus strains were analyzed. Antimicrobial susceptibility testing revealed that all isolates were susceptible to rifampin and vancomycin. Of the 745 strains, 94.8% were susceptible to tetracycline, 94.5% to clindamycin, and 88.3% to erythromycin. The lowest susceptibility rate was found for penicillin (25.8%). Six percent of the tested strains were methicillin-resistant S. aureus (MRSA). The majority of methicillin-resistant strains were isolated from skin and soft tissues (73.3%), with a smaller portion isolated from blood (17.8%) and respiratory tract (8.9%). The ermC gene was detected in 41.1% of erythromycin-resistant S. aureus strains, whereas ermA was detected in 32.2% of erythromycin-resistant S. aureus strains. 69.2% of tetracycline-resistant S. aureus strains had tetK gene, and 28.2% had tetM gene. 7.3% of S. aureus isolates harbored lukF-PV gene. The frequency of the pvl gene detection was significantly higher in MRSA isolates than in methicillin-susceptible S. aureus isolates (p < 0.0001).
Collapse
Affiliation(s)
- Agnė Kirkliauskienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | | | - Daiva Radzišauskienė
- Department of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tomas Kačergius
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Maksim Bratchikov
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Lina Kaplerienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
8
|
Day NJ, Santucci P, Gutierrez MG. Host cell environments and antibiotic efficacy in tuberculosis. Trends Microbiol 2024; 32:270-279. [PMID: 37709598 DOI: 10.1016/j.tim.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The aetiologic agent of tuberculosis (TB), Mycobacterium tuberculosis (Mtb), can survive, persist, and proliferate in a variety of heterogeneous subcellular compartments. Therefore, TB chemotherapy requires antibiotics crossing multiple biological membranes to reach distinct subcellular compartments and target these bacterial populations. These compartments are also dynamic, and our understanding of intracellular pharmacokinetics (PK) often represents a challenge for antitubercular drug development. In recent years, the development of high-resolution imaging approaches in the context of host-pathogen interactions has revealed the intracellular distribution of antibiotics at a new level, yielding discoveries with important clinical implications. In this review, we describe the current knowledge regarding cellular PK of antibiotics and the complexity of drug distribution within the context of TB. We also discuss the recent advances in quantitative imaging and highlight their applications for drug development in the context of how intracellular environments and microbial localisation affect TB treatment efficacy.
Collapse
Affiliation(s)
- Nathan J Day
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
9
|
Agyirifo DS, Mensah TA, Senya ASY, Hounkpe A, Dornyoh CD, Otwe EP. Dynamics of antimicrobial resistance and virulence of staphylococcal species isolated from foods traded in the Cape Coast metropolitan and Elmina municipality of Ghana. Heliyon 2023; 9:e21584. [PMID: 38027608 PMCID: PMC10663863 DOI: 10.1016/j.heliyon.2023.e21584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The impact of staphylococci on food poisoning and infections could be higher than previously reported. In this study, we characterised the occurrence and coexistence of antimicrobial resistance and virulence genes of staphylococci isolates in foods. Staphylococci were isolated from 236 samples of selected street-vended foods and identified. The pattern of antimicrobial resistance and virulence genes in the staphylococci were assessed using disc diffusion, PCR and analysis of next-generation sequencing data. The food samples (70.76 %) showed a high prevalence of staphylococci and differed among the food categories. Forty-five Staphylococcus species were identified and comprised coagulase-negative and positive species. Staphylococcus sciuri (now Mammaliicoccus sciuri), S. aureus, S. kloosii, S. xylosus, S. saprophyticus, S. haemolyticus and S. succinus were the most abundant species. The staphylococcal isolates exhibited resistance to tetracycline, levofloxacin, ciprofloxacin, norfloxacin, gentamicin and amikacin and susceptibility to nitrofurantoin. Antimicrobial susceptibilities were also reported for cefoperazone, ceftriaxone, cefotaxime, nalidixic acid and piperacillin-tazobactam. The antimicrobial resistance and virulence genes commonly detected consisted of tet, arl, macB, van, gyr, nor, optrA, bcrA, blaZ, taeA and S. aureus lmrS. The isolates frequently exhibited multiple resistance (30.42 %) of up to eight antimicrobial drug classes. The isolates predominantly harboured genes that express efflux pump proteins (50.53 %) for antibiotic resistance compared with inactivation (10.05 %), target alteration (26.72 %), protection (7.67 %) and replacement (3.17 %). The virulence determinants comprised genes of pyrogenic toxin superantigens (eta, etb, tst), adhesions (clf, fnbA, fnbB, cna, map, ebp, spA, vWbp, coa) and genes that express exoproteins (nuclease, metalloprotease, γ-hemolysin, hyaluronate lyase). There was a statistically significant difference in the prevalence of staphylococci isolates and their antimicrobial resistance and virulence profile as revealed by the phenotypic, PCR and next-generation sequencing techniques. The findings suggest a higher health risk for consumers. We recommend a critical need for awareness and antimicrobial susceptibility and anti-virulence strategies to ensure food safety and counteract the spread of this clinically relevant genus.
Collapse
Affiliation(s)
- Daniel Sakyi Agyirifo
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Theophilus Abonyi Mensah
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Andrews Senyenam Yao Senya
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Alphonse Hounkpe
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Cindy Deladem Dornyoh
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Plas Otwe
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
10
|
Chang G, Luo Z, Zhang Y, Xu X, Zhou T, Chen D, Li L, Wang X. Electron beam irradiation degrades the toxicity and alters the protein structure of Staphylococcus aureus alpha-hemolysin. Int J Biol Macromol 2023; 246:125608. [PMID: 37392914 DOI: 10.1016/j.ijbiomac.2023.125608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
α-Hemolysin (Hla) is a potent pore-forming toxin (PFT) produced by Staphylococcus aureus that exacerbates the pathogenesis of S. aureus enterotoxicity and plays a role in population food poisoning. Hla lyses cells by binding to host cell membranes and oligomerizing to form heptameric structures, thereby disrupting the cell barrier. Although the broad bactericidal effect of electron beam irradiation (EBI) has been demonstrated whether it has a damaging or degrading effect on Hla's remains unknown. In this study, EBI was found to have the effect of altering the secondary structure of Hla proteins, verifying that the damaging effect of EBI-treated Hla on intestinal and skin epithelial cell barriers was significantly reduced. It was noted by hemolysis and protein interactions that EBI treatment significantly disrupted the binding of Hla to its high-affinity receptor, but did not affect the binding between Hla monomers to form heptamers. Thus, EBI can effectively reduce the threat of Hla to food safety.
Collapse
Affiliation(s)
- Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zonghong Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - DiShi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Li Li
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Chen Y, Zhao C, Guo H, Zou W, Zhang Z, Wei D, Lu H, Zhang L, Zhao Y. Wip1 inhibits neutrophil extracellular traps to promote abscess formation in mice by directly dephosphorylating Coronin-1a. Cell Mol Immunol 2023; 20:941-954. [PMID: 37386173 PMCID: PMC10387484 DOI: 10.1038/s41423-023-01057-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection; however, the molecular regulation of NET formation remains poorly understood. In the current study, we found that inhibition of the wild-type p53-induced phosphatase 1 (Wip1) significantly suppressed the activity of Staphylococcus aureus (S. aureus) and accelerated abscess healing in S. aureus-induced abscess model mice by enhancing NET formation. A Wip1 inhibitor significantly enhanced NET formation in mouse and human neutrophils in vitro. High-resolution mass spectrometry and biochemical assays demonstrated that Coro1a is a substrate of Wip1. Further experiments also revealed that Wip1 preferentially and directly interacts with phosphorylated Coro1a than compared to unphosphorylated inactivated Coro1a. The phosphorylated Ser426 site of Coro1a and the 28-90 aa domain of Wip1 are essential for the direct interaction of Coro1a and Wip1 and for Wip1 dephosphorylation of p-Coro1a Ser426. Wip1 deletion or inhibition in neutrophils significantly upregulated the phosphorylation of Coro1a-Ser426, which activated phospholipase C and subsequently the calcium pathway, the latter of which promoted NET formation after infection or lipopolysaccharide stimulation. This study revealed Coro1a to be a novel substrate of Wip1 and showed that Wip1 is a negative regulator of NET formation during infection. These results support the potential application of Wip1 inhibitors to treat bacterial infections.
Collapse
Affiliation(s)
- Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilong Zou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
12
|
Zhu X, Huang B, Zhao F, Lian J, He L, Zhang Y, Ji L, Zhang J, Yan X, Zeng T, Ma C, Liang Y, Zhang C, Lin J. p38-mediated FOXN3 phosphorylation modulates lung inflammation and injury through the NF-κB signaling pathway. Nucleic Acids Res 2023; 51:2195-2214. [PMID: 36794705 PMCID: PMC10018351 DOI: 10.1093/nar/gkad057] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/23/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
NF-κB activates the primary inflammatory response pathway responsible for methicillin-resistant Staphylococcus aureus (MRSA)-induced lung inflammation and injury. Here, we report that the Forkhead box transcription factor FOXN3 ameliorates MRSA-induced pulmonary inflammatory injury by inactivating NF-κB signaling. FOXN3 competes with IκBα for binding to heterogeneous ribonucleoprotein-U (hnRNPU), thereby blocking β-TrCP-mediated IκBα degradation and leading to NF-κB inactivation. FOXN3 is directly phosphorylated by p38 at S83 and S85 residues, which induces its dissociation from hnRNPU, thus promoting NF-κB activation. After dissociation, the phosphorylated FOXN3 becomes unstable and undergoes proteasomal degradation. Additionally, hnRNPU is essential for p38-mediated FOXN3 phosphorylation and subsequent phosphorylation-dependent degradation. Functionally, genetic ablation of FOXN3 phosphorylation results in strong resistance to MRSA-induced pulmonary inflammatory injury. Importantly, FOXN3 phosphorylation is clinically positively correlated with pulmonary inflammatory disorders. This study uncovers a previously unknown regulatory mechanism underpinning the indispensable role of FOXN3 phosphorylation in the inflammatory response to pulmonary infection.
Collapse
Affiliation(s)
- Xinxing Zhu
- Correspondence may also be addressed to Xinxing Zhu.
| | | | - Fengting Zhao
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Lian
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Lixiang He
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Yangxia Zhang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Longkai Ji
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Xin Yan
- Translational Neurodegeneration Section Albrecht-Kossel, Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Taoling Zeng
- State Key Laboratory ofCellular Stress Biology, Innovation Center for Cell Biology, School of LifeSciences, Xiamen University, Fujian 361102, China
| | - Chunya Ma
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | | |
Collapse
|
13
|
Scutera S, Sparti R, Comini S, Menotti F, Musso T, Cuffini AM, Allizond V, Banche G. Dalbavancin Boosts the Ability of Neutrophils to Fight Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:ijms24032541. [PMID: 36768864 PMCID: PMC9917267 DOI: 10.3390/ijms24032541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Polymorphonuclear leukocytes (PMNs) are the most important cell type involved in the early nonspecific host response to bacterial pathogens. Staphylococcus aureus has evolved mechanisms to evade immune responses that contribute to its persistence in PMNs, and acquired resistance to several antimicrobials. Additionally, methicillin-resistant S. aureus (MRSA) is one of the most common causes of acute bacterial skin and skin-structure infections (ABSSSIs). Dalbavancin (DBV), a lipoglycopeptide, is indicated for the treatment of ABSSSIs, and has a broad spectrum of action against most microorganisms. Here, we sought to determine the effect of DBV on the neutrophil killing of MRSA and its potential immunomodulating activity. Our results revealed that DBV boosts MRSA killing by acting on both bacteria and PMNs. DBV pre-treatment of PMNs did not change the respiratory burst or degranulation, while an increased trend in neutrophil extracellular traps-associated elastase and in the production of TNFα and CXCL8 was revealed. In parallel, DBV caused a delay in the apoptosis of MRSA-infected neutrophils. In conclusion, we demonstrated a cooperative effect between the antimicrobial properties of PMNs and DBV, thus owing to their immunomodulatory activity. In the choice of the treatment management of serious S. aureus infections, DBV should be considered as an outstanding option since it reinforces PMNs pathogen clearance capability by exerting its effect directly, not only on MRSA but also on neutrophils.
Collapse
|
14
|
Rapid Point-of-Care Tests Using Staphylococcal Protein A Can Detect Early IgM Responses in HIV-1 and Treponema pallidum Infections. Microbiol Spectr 2022; 10:e0330922. [PMID: 36453925 PMCID: PMC9769532 DOI: 10.1128/spectrum.03309-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Serological assays detecting IgM antibodies in addition to IgG antibodies have a diagnostic advantage in finding early infections. Staphylococcal protein A (SpA), widely used as an antibody-detecting reagent in various immunoassays, is considered to have a high binding affinity mainly to IgG, although its interaction with other classes of immunoglobulins has also been documented. Using 28 samples from 22 HIV-1 seroconversion panels, the present study demonstrated detection of early IgM antibodies by SpA-based rapid point-of-care tests, including DPP HIV 1/2, DPP HIV-Syphilis, STAT-PAK HIV 1/2, and Sure Check HIV 1/2. Samples with predominant IgM antibodies were identified by in-house IgM assays and confirmed by pretreatment with 0.1 M 2-mercaptoethanol. Likewise, the detection of treponemal IgM antibodies was shown by DPP HIV-Syphilis assay in eight samples collected at early syphilis infection. Direct interaction between IgM and SpA immobilized in solid phase or in solution was demonstrated with purified human polyclonal IgM. A strong correlation was found between the antibody levels detected by SpA and anti-IgM reagent in the early seroconversion samples, thus supporting the evidence for IgM binding by SpA. These assays demonstrated the ability to detect IgM antibodies, which may increase test sensitivity in early infections due to a reduced serodiagnostic window. IMPORTANCE Sexually transmitted infections, including HIV and syphilis, remain a global public health concern. The main laboratory testing approach for HIV and syphilis relies on serological assays. Detection of the IgM class of antibodies may have a diagnostic advantage in finding early infections. The present study using well-characterized HIV-1 and syphilis samples has demonstrated that staphylococcal protein A employed for antibody detection in rapid point-of-care tests, including DPP HIV 1/2, DPP HIV-Syphilis, STAT-PAK HIV 1/2, and Sure Check HIV 1/2, can capture IgM antibodies in addition to IgG antibodies. The findings strongly suggest that the ability to detect IgM antibodies by these immunoassays may facilitate the identification of acute-stage HIV and syphilis infections.
Collapse
|
15
|
Bayaraa T, Gaete J, Sutiono S, Kurz J, Lonhienne T, Harmer JR, Bernhardt PV, Sieber V, Guddat L, Schenk G. Dihydroxy‐Acid Dehydratases From Pathogenic Bacteria: Emerging Drug Targets to Combat Antibiotic Resistance. Chemistry 2022; 28:e202200927. [PMID: 35535733 PMCID: PMC9543379 DOI: 10.1002/chem.202200927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/30/2022]
Abstract
There is an urgent global need for the development of novel therapeutics to combat the rise of various antibiotic‐resistant superbugs. Enzymes of the branched‐chain amino acid (BCAA) biosynthesis pathway are an attractive target for novel anti‐microbial drug development. Dihydroxy‐acid dehydratase (DHAD) is the third enzyme in the BCAA biosynthesis pathway. It relies on an Fe−S cluster for catalytic activity and has recently also gained attention as a catalyst in cell‐free enzyme cascades. Two types of Fe−S clusters have been identified in DHADs, i.e. [2Fe−2S] and [4Fe−4S], with the latter being more prone to degradation in the presence of oxygen. Here, we characterise two DHADs from bacterial human pathogens, Staphylococcus aureus and Campylobacter jejuni (SaDHAD and CjDHAD). Purified SaDHAD and CjDHAD are virtually inactive, but activity could be reversibly reconstituted in vitro (up to ∼19,000‐fold increase with kcat as high as ∼6.7 s−1). Inductively‐coupled plasma‐optical emission spectroscopy (ICP‐OES) measurements are consistent with the presence of [4Fe−4S] clusters in both enzymes. N‐isopropyloxalyl hydroxamate (IpOHA) and aspterric acid are both potent inhibitors for both SaDHAD (Ki=7.8 and 51.6 μM, respectively) and CjDHAD (Ki=32.9 and 35.1 μM, respectively). These compounds thus present suitable starting points for the development of novel anti‐microbial chemotherapeutics.
Collapse
Affiliation(s)
- Tenuun Bayaraa
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Jose Gaete
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic resources Campus Straubing for Biotechnology and Sustainability Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Julia Kurz
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Jeffrey R. Harmer
- Centre for Advanced Imaging The University of Queensland Brisbane 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Volker Sieber
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
- Chair of Chemistry of Biogenic resources Campus Straubing for Biotechnology and Sustainability Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Luke Guddat
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Australia
- Sustainable Minerals Institute The University of Queensland Brisbane 4072 Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
16
|
Suigo L, Chojnacki M, Zanotto C, Sebastián-Pérez V, Morghen CDG, Casiraghi A, Dunman PM, Valoti E, Straniero V. Staphylococcus aureus RnpA Inhibitors: Computational-Guided Design, Synthesis and Initial Biological Evaluation. Antibiotics (Basel) 2021; 10:antibiotics10040438. [PMID: 33920000 PMCID: PMC8071009 DOI: 10.3390/antibiotics10040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is spreading worldwide and it has become one of the most important issues in modern medicine. In this context, the bacterial RNA degradation and processing machinery are essential processes for bacterial viability that may be exploited for antimicrobial therapy. In Staphylococcus aureus, RnpA has been hypothesized to be one of the main players in these mechanisms. S. aureus RnpA is able to modulate mRNA degradation and complex with a ribozyme (rnpB), facilitating ptRNA maturation. Corresponding small molecule screening campaigns have recently identified a few classes of RnpA inhibitors, and their structure activity relationship (SAR) has only been partially explored. Accordingly, in the present work, using computational modeling of S. aureus RnpA we identified putative crucial interactions of known RnpA inhibitors, and we used this information to design, synthesize, and biologically assess new potential RnpA inhibitors. The present results may be beneficial for the overall knowledge about RnpA inhibitors belonging to both RNPA2000-like thiosemicarbazides and JC-like piperidine carboxamides molecular classes. We evaluated the importance of the different key moieties, such as the dichlorophenyl and the piperidine of JC2, and the semithiocarbazide, the furan, and the i-propylphenyl ring of RNPA2000. Our efforts could provide a foundation for further computational-guided investigations.
Collapse
Affiliation(s)
- Lorenzo Suigo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy; (L.S.); (A.C.); (E.V.)
| | - Michaelle Chojnacki
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA; (M.C.); (P.M.D.)
| | - Carlo Zanotto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy;
| | | | - Carlo De Giuli Morghen
- Department of Chemical—Pharmaceutical and Biomolecular Technologies, Catholic University “Our Lady of Good Counsel”, Rr. Dritan Hoxha, 1025 Tirana, Albania;
| | - Andrea Casiraghi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy; (L.S.); (A.C.); (E.V.)
| | - Paul M. Dunman
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA; (M.C.); (P.M.D.)
| | - Ermanno Valoti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy; (L.S.); (A.C.); (E.V.)
| | - Valentina Straniero
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milano, Italy; (L.S.); (A.C.); (E.V.)
- Correspondence: ; Tel.: +39-0250319361
| |
Collapse
|