1
|
Zhao Y, Liu J, Peng C, Guo S, Wang B, Chen L, Wang Y, Tang H, Liu L, Pan Q, Li S, Wang J, Yang D, Du E. Cross-protection against homo and heterologous influenza viruses via intranasal administration of an HA chimeric multiepitope nanoparticle vaccine. J Nanobiotechnology 2025; 23:77. [PMID: 39905416 DOI: 10.1186/s12951-025-03122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Influenza A viruses (IAVs) cause seasonal influenza epidemics and pose significant threats to public health. However, seasonal influenza vaccines often elicit strain-specific immune responses and confer little protection against mismatched strains. There is an urgent need to develop universal influenza vaccines against emerging and potentially re-emerging influenza virus infections. Multiepitope vaccines combining multiple conserved epitopes can induce more robust and broader immune responses and provide a potential solution. RESULTS Here, we demonstrated that an HA chimeric multiepitope nanoparticle vaccine, delivered intranasally conferred broad protection against challenges with various influenza viruses in mice. The nanoparticle vaccine co-expresses the ectodomain of haemagglutinin (H), three repeated highly conserved ectodomains of matrix protein 2 (M), and the M-cell-targeting ligand Co4B (C) in a baculovirus-insect cell system. These elements (C, H and M) were presented on the surface of self-assembling ferritin (f) in tandem to generate a nanoparticle denoted as CHM-f. Intranasal vaccination with CHM-f nanoparticles elicited robust humoral and cellular immune responses, conferring complete protection against a variety of IAVs, including the A/PR8/34 H1N1 strain, the swine flu H3N2 strain, the avian flu H5N8 strain, and H9N2. When CHM-f nanoparticles adjuvanted with CpG IAMA-002, the weight loss protective effect, cellular immune responses and mucosal IgA responses were significantly augmented. Compared with controls, mice immunized with CHM-f nanoparticles with or without CpG IAMA-002 showed significant reductions in weight loss, lung viral titres and pathological changes. CONCLUSIONS These results suggest that CHM-f nanoparticle with or without CpG IAMA-002 is a promising candidate as a universal influenza vaccine.
Collapse
Affiliation(s)
- Yongqiang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chun Peng
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China
| | - Shuangshuang Guo
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Bo Wang
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Longping Chen
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Yating Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haiwen Tang
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China
| | - Liming Liu
- Nanjing JSIAMA Biopharmaceuticals Ltd., Nanjing, Jiangsu, 210000, China
| | - Qi Pan
- Nanjing JSIAMA Biopharmaceuticals Ltd., Nanjing, Jiangsu, 210000, China
| | - Shiren Li
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongni Yang
- Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, 610219, China.
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Zhao Y, Guo S, Liu J, Wang Y, Wang B, Peng C, Du E. Adjuvant-free, self-assembling ferritin nanoparticle vaccine coupled with influenza virus hemagglutinin protein carrying M1 and PADRE epitopes elicits cross-protective immune responses. Front Immunol 2025; 16:1519866. [PMID: 39958330 PMCID: PMC11827429 DOI: 10.3389/fimmu.2025.1519866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Influenza viruses pose a significant threat to global public health. Several influenza pandemic outbreaks have had serious economic and public health implications. Current influenza virus vaccines generally provide strain-specific protection and must be rapidly produced annually to match the circulating viruses. Developing influenza vaccines that confer protection against a broad range of viruses will have a positive impact on public health. In this study, we aimed to develop a ferritin-based influenza nanoparticle vaccine with a broad protective spectrum to enhance the immune response against diverse influenza viruses. Results We generated an adjuvant-free, self-assembling nanoparticle vaccine against diverse influenza A viruses. This nanoparticle vaccine displayed multi-antigen targets on the surface of Helicobacter pylori ferritin, which consists of the ectodomain of hemagglutinin of the H3N2 virus and three tandem highly conserved influenza M1 epitopes fused with the universal helper T-cell epitope PADRE, named HMP-NP. HMP-NPs were expressed in a soluble form in the baculovirus-insect cell system and self-assembled into homogeneous nanoparticles. Animal immunization studies showed that the HMP-NP nanovaccine elicited 4-fold higher haemagglutination inhibition (HAI) titers than inactivated influenza vaccine. And neutralization titers induced by HMP-NPs against the H3N2 virus and heterologous strains of the H1N1 and H9N2 viruses were ~8, 12.4 and 16 times higher than inactivated influenza vaccine, respectively. Meanwhile, we also observed that the number of IFN-γ- and IL-4-secreting cells induced by HMP-NPs were ~2.5 times higher than inactivated influenza vaccine. Importantly, intranasal immunization with HMP-NPs, without any adjuvant, induced efficient mucosal IgA responses and conferred complete protection against the H3N2 virus, as well as partial protection against the H1N1 and H9N2 viruses and significantly reduced lung viral loads. Discussion Overall, our results indicated that the self-assembled nanovaccines increased the potency and breadth of the immune response against various influenza viruses and are a promising delivery platform for developing vaccines with broader protection against emerging influenza viruses and other pathogens.
Collapse
Affiliation(s)
- Yongqiang Zhao
- College of Veterinary Medicine, Northwest Agriculture and Forestry (A&F) University, Yangling, Shaanxi, China
| | - Shuangshuang Guo
- Department of Research and Development, Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, China
| | - Jia Liu
- College of Veterinary Medicine, Northwest Agriculture and Forestry (A&F) University, Yangling, Shaanxi, China
| | - Yating Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry (A&F) University, Yangling, Shaanxi, China
| | - Bo Wang
- Department of Research and Development, Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, China
| | - Chun Peng
- Department of Research and Development, Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest Agriculture and Forestry (A&F) University, Yangling, Shaanxi, China
- Department of Research and Development, Yangling Carey Biotechnology Co., Ltd., Yangling, Shaanxi, China
- Department of Research and Development, Chengdu NanoVAX Biotechnology Co., Ltd., Chengdu, Sichuan, China
| |
Collapse
|
3
|
Li J, Zhang Y, Zhang X, Liu L. Influenza and Universal Vaccine Research in China. Viruses 2022; 15:116. [PMID: 36680158 PMCID: PMC9861666 DOI: 10.3390/v15010116] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Influenza viruses usually cause seasonal influenza epidemics and influenza pandemics, resulting in acute respiratory illness and, in severe cases, multiple organ complications and even death, posing a serious global and human health burden. Compared with other countries, China has a large population base and a large number of influenza cases and deaths. Currently, influenza vaccination remains the most cost-effective and efficient way to prevent and control influenza, which can significantly reduce the risk of influenza virus infection and serious complications. The antigenicity of the influenza vaccine exhibits good protective efficacy when matched to the seasonal epidemic strain. However, when influenza viruses undergo rapid and sustained antigenic drift resulting in a mismatch between the vaccine strain and the epidemic strain, the protective effect is greatly reduced. As a result, the flu vaccine must be reformulated and readministered annually, causing a significant drain on human and financial resources. Therefore, the development of a universal influenza vaccine is necessary for the complete fight against the influenza virus. By statistically analyzing cases related to influenza virus infection and death in China in recent years, this paper describes the existing marketed vaccines, vaccine distribution and vaccination in China and summarizes the candidate immunogens designed based on the structure of influenza virus, hoping to provide ideas for the design and development of new influenza vaccines in the future.
Collapse
Affiliation(s)
| | | | | | - Longding Liu
- Key Laboratory of Systemic Innovative Research on Virus Vaccine, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
4
|
Metcalfe C. A Review of Methodologies for the Detection, Quantitation, and Localization of Free Cysteine in Recombinant Proteins: A Focus on Therapeutic Monoclonal Antibodies. Front Mol Biosci 2022; 9:886417. [PMID: 35832742 PMCID: PMC9271845 DOI: 10.3389/fmolb.2022.886417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Free-cysteine residues in recombinant biotherapeutics such as monoclonal antibodies can arise from incorrect cellular processing of disulfide bonds during synthesis or by reduction of disulfide bonds during the harvest and purification stage of manufacture. Free cysteines can affect potency, induce aggregation, and decrease the stability of therapeutic proteins, and the levels and positions of free cysteines in proteins are closely monitored by both manufacturers and regulators to ensure safety and efficacy. This review summarizes the latest methodologies for the detection and quantification of free cysteines.
Collapse
|