1
|
Yang B, Wei W, Fang J, Xue Y, Wei J. Diabetic Neuropathic Pain and Circadian Rhythm: A Future Direction Worthy of Study. J Pain Res 2024; 17:3005-3020. [PMID: 39308994 PMCID: PMC11414757 DOI: 10.2147/jpr.s467249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024] Open
Abstract
More than half of people with diabetes experience neuropathic pain. Previous research has shown that diabetes patients' neuropathic pain exhibits a circadian cycle, which is characterized by increased pain sensitivity at night. Additional clinical research has revealed that the standard opioid drugs are ineffective at relieving pain and do not change the circadian rhythm. This article describes diabetic neuropathic pain and circadian rhythms separately, with a comprehensive focus on circadian rhythms. It is hoped that this characteristic of diabetic neuropathic pain can be utilized in the future to obtain more effective treatments for it.
Collapse
Affiliation(s)
- Baozhong Yang
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
| | - Wei Wei
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| | - Jun Fang
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| | - Yating Xue
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| | - Jiacheng Wei
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| |
Collapse
|
2
|
Hu F, Lin J, Xiong L, Li Z, Liu WK, Zheng YJ. Exploring the molecular mechanism of Xuebifang in the treatment of diabetic peripheral neuropathy based on bioinformatics and network pharmacology. Front Endocrinol (Lausanne) 2024; 15:1275816. [PMID: 38390212 PMCID: PMC10881818 DOI: 10.3389/fendo.2024.1275816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Background Xuebifang (XBF), a potent Chinese herbal formula, has been employed in managing diabetic peripheral neuropathy (DPN). Nevertheless, the precise mechanism of its action remains enigmatic. Purpose The primary objective of this investigation is to employ a bioinformatics-driven approach combined with network pharmacology to comprehensively explore the therapeutic mechanism of XBF in the context of DPN. Study design and Methods The active chemicals and their respective targets of XBF were sourced from the TCMSP and BATMAN databases. Differentially expressed genes (DEGs) related to DPN were obtained from the GEO database. The targets associated with DPN were compiled from the OMIM, GeneCards, and DrugBank databases. The analysis of GO, KEGG pathway enrichment, as well as immuno-infiltration analysis, was conducted using the R language. The investigation focused on the distribution of therapeutic targets of XBF within human organs or cells. Subsequently, molecular docking was employed to evaluate the interactions between potential targets and active compounds of XBF concerning the treatment of DPN. Results The study successfully identified a total of 122 active compounds and 272 targets associated with XBF. 5 core targets of XBF for DPN were discovered by building PPI network. According to GO and KEGG pathway enrichment analysis, the mechanisms of XBF for DPN could be related to inflammation, immune regulation, and pivotal signalling pathways such as the TNF, TLR, CLR, and NOD-like receptor signalling pathways. These findings were further supported by immune infiltration analysis and localization of immune organs and cells. Moreover, the molecular docking simulations demonstrated a strong binding affinity between the active chemicals and the carefully selected targets. Conclusion In summary, this study proposes a novel treatment model for XBF in DPN, and it also offers a new perspective for exploring the principles of traditional Chinese medicine (TCM) in the clinical management of DPN.
Collapse
Affiliation(s)
- Faquan Hu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jiaran Lin
- Affiliated Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyuan Xiong
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengpin Li
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wen-ke Liu
- Affiliated Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-jiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Ullah S, Burki S, Munir AB, Yousaf G, Shafique M. Nanocarrier-based localized and effective treatment of renal disorders: currently employed targeting strategies. Nanomedicine (Lond) 2024; 19:345-361. [PMID: 38293889 DOI: 10.2217/nnm-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Renal disorders pose a global health threat, with targeted drug-delivery systems emerging as a promising strategy to enhance therapy safety and efficacy. Recent efforts have harnessed targeted nanomaterials for kidney disease treatment. While some systems remain in the early stages, they show immense potential in delivering cargo to specific sites. Through animal model experimentations, it has been demonstrated to reduce systemic side effects and enhance treatment effectiveness. This review presents current strategies for kidney disorder treatment, emphasizing site-specific targeting critical to renal disease pathophysiology. Recent advancements in nano-drug delivery systems for kidney targeting are explored. Finally, toxicological aspects and prospects of the most promising kidney-targeting delivery systems are discussed in this review article.
Collapse
Affiliation(s)
- Shafi Ullah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Superior University, Lahore, Punjab, 54000, Pakistan
| | - Samiullah Burki
- Department of Pharmacology, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | - Abu Bakar Munir
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Superior University, Lahore, Punjab, 54000, Pakistan
| | - Ghulam Yousaf
- PAF Ruth Pfau Medical College and Hospital Faisal Base Karachi, Karachi, 75350, Pakistan
| | - Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| |
Collapse
|
4
|
Saunders MN, Griffin KV, Kalashnikova I, Kolpek D, Smith DR, Saito E, Cummings BJ, Anderson AJ, Shea LD, Park J. Biodegradable nanoparticles targeting circulating immune cells reduce central and peripheral sensitization to alleviate neuropathic pain following spinal cord injury. Pain 2024; 165:92-101. [PMID: 37463227 PMCID: PMC10787809 DOI: 10.1097/j.pain.0000000000002989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Neuropathic pain is a critical source of comorbidity following spinal cord injury (SCI) that can be exacerbated by immune-mediated pathologies in the central and peripheral nervous systems. In this article, we investigate whether drug-free, biodegradable, poly(lactide- co -glycolide) (PLG) nanoparticle treatment mitigates the development of post-SCI neuropathic pain in female mice. Our results show that acute treatment with PLG nanoparticles following thoracic SCI significantly reduces tactile and cold hypersensitivity scores in a durable fashion. Nanoparticles primarily reduce peripheral immune-mediated mechanisms of neuropathic pain, including neuropathic pain-associated gene transcript frequency, transient receptor potential ankyrin 1 nociceptor expression, and MCP-1 (CCL2) chemokine production in the subacute period after injury. Altered central neuropathic pain mechanisms during this period are limited to reduced innate immune cell cytokine expression. However, in the chronic phase of SCI, nanoparticle treatment induces changes in both central and peripheral neuropathic pain signaling, driving reductions in cytokine production and other immune-relevant markers. This research suggests that drug-free PLG nanoparticles reprogram peripheral proalgesic pathways subacutely after SCI to reduce neuropathic pain outcomes and improve chronic central pain signaling.
Collapse
Affiliation(s)
- Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Kate V Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Irina Kalashnikova
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
| | - Daniel Kolpek
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
| | - Dominique R Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, CA USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, CA USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Jonghyuck Park
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY USA
| |
Collapse
|
5
|
Akbar M, Wandy A, Soraya GV, Goysal Y, Lotisna M, Basri MI. Sudomotor dysfunction in diabetic peripheral neuropathy (DPN) and its testing modalities: A literature review. Heliyon 2023; 9:e18184. [PMID: 37539131 PMCID: PMC10393629 DOI: 10.1016/j.heliyon.2023.e18184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/04/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Long term consequences of diabetes mellitus (DM) may include multi-organ complications such as retinopathy, cardiovascular disease, neuronal, and kidney damage. One of the most prevalent complication is diabetic peripheral neuropathy (DPN), occurring in half of all diabetics, and is the main cause of disability globally with profound impact on a patient's quality of life. Small fiber neuropathy (SFN) can develop in the pre-diabetes stage preceding large fiber damage in DPN. Asymptomatic SFN is difficult to diagnose in early stages, with sudomotor dysfunction considered one of the earliest manifestations of autonomic neuropathy. Early detection is crucial as it can prevent potential cardiovascular events. Although punch skin biopsy is the gold-standard method for SFN diagnosis, implementation as routine screening is hindered due to its invasive, impractical, and time-consuming nature. Other sudomotor testing modalities, most of which evaluate the postganglionic cholinergic sympathetic nervous system, have been developed with varying sensitivity and specificity for SFN diagnosis. Here, we provide an overview on the general mechanism of DPN, the importance of sudomotor assessment for early detection of autonomic dysfunction in DPN, the benefits and disadvantages of current testing modalities, factors that may affect testing, and the importance of future discoveries on sudomotor testing for successful DPN diagnosis.
Collapse
Affiliation(s)
- Muhammad Akbar
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Alvian Wandy
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Gita Vita Soraya
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yudy Goysal
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mimi Lotisna
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Iqbal Basri
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
6
|
Zhao Q, Cheng N, Sun X, Yan L, Li W. The application of nanomedicine in clinical settings. Front Bioeng Biotechnol 2023; 11:1219054. [PMID: 37441195 PMCID: PMC10335748 DOI: 10.3389/fbioe.2023.1219054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
As nanotechnology develops in the fields of mechanical engineering, electrical engineering, information and communication, and medical care, it has shown great promises. In recent years, medical nanorobots have made significant progress in terms of the selection of materials, fabrication methods, driving force sources, and clinical applications, such as nanomedicine. It involves bypassing biological tissues and delivering drugs directly to lesions and target cells using nanorobots, thus increasing concentration. It has also proved useful for monitoring disease progression, complementary diagnosis, and minimally invasive surgery. Also, we examine the development of nanomedicine and its applications in medicine, focusing on the use of nanomedicine in the treatment of various major diseases, including how they are generalized and how they are modified. The purpose of this review is to provide a summary and discussion of current research for the future development in nanomedicine.
Collapse
Affiliation(s)
- Qingsong Zhao
- Postdoctoral Programme of Meteria Medica Institute of Harbin University of Commerce, Harbin, China
| | - Nuo Cheng
- Department of Endocrinology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xuyan Sun
- Department of Endocrinology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lijun Yan
- Postdoctoral Programme of Meteria Medica Institute of Harbin University of Commerce, Harbin, China
| | - Wenlan Li
- Postdoctoral Programme of Meteria Medica Institute of Harbin University of Commerce, Harbin, China
| |
Collapse
|