1
|
Shao M, Zhao C, Pan Z, Yang X, Gao C, Kam GHC, Zhou H, Lee SMY. Oxyphylla A exerts antiparkinsonian effects by ameliorating 6-OHDA-induced mitochondrial dysfunction and dyskinesia in vitro and in vivo. Chem Biol Interact 2024; 403:111224. [PMID: 39233265 DOI: 10.1016/j.cbi.2024.111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Parkinson's disease (PD) poses a formidable challenge in neurology, marked by progressive neuronal loss in the substantia nigra. Despite extensive investigations, understanding PD's pathophysiology remains elusive, with no effective therapeutic intervention identified to alter its course. Oxyphylla A (OPA), a natural compound extracted from Alpinia oxyphylla, exhibits promise in experimental models of various neurodegenerative disorders (ND), notably through novel mechanisms like α-synuclein degradation. The purpose of this investigation was to explore the neuroprotective potential of OPA on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PD models, with a focus on mitochondrial functions. Additionally, potential OPA targets for neuroprotection were explored. PC12 cells and C57BL/6 mice were lesioned with 6-OHDA as PD models. Impaired mitochondrial membrane potential (Δψm) was assessed using JC-1 staining. The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were also detected to evaluate mitochondrial function and glucose metabolism in PC12 cells. Behavioral analysis and immunohistochemistry were performed to evaluate pathological lesions in the mouse brain. Moreover, bioinformatics tools predicted OPA targets. OPA restored cellular energy metabolism and mitochondrial biogenesis, preserving Δψm in 6-OHDA-induced neuronal damage. Pre-treatment mitigated loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra and striatal dopaminergic fibers, restoring dopamine levels and ameliorating motor deficits in PD mice. Mechanistically, OPA may activate PKA/Akt/GSK-3β and CREB/PGC-1α/NRF-1/TFAM signaling cascades. Bioinformatics analysis identified potential OPA targets, including CTNNB1, ESR1, MAPK1, MAPK14, and SRC. OPA, derived from Alpinia oxyphylla, exhibited promising neuroprotective activity against PD through addressing mitochondrial dysfunction, suggesting its potential as a multi-targeted therapeutic for PD.
Collapse
Affiliation(s)
- Min Shao
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhijian Pan
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xuanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Gloria Hio-Cheng Kam
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Hefeng Zhou
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Deep Ocean Resource, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
2
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2024:revneuro-2024-0080. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
3
|
Pan Z, Shao M, Zhao C, Yang X, Li H, Cui G, Liang X, Yu CW, Ye Q, Gao C, Di L, Chern JW, Zhou H, Lee SMY. J24335 exerts neuroprotective effects against 6-hydroxydopamine-induced lesions in PC12 cells and mice. Eur J Pharm Sci 2024; 194:106696. [PMID: 38199443 DOI: 10.1016/j.ejps.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Parkinson's disease is the second most prevalent age-related neurodegenerative disease and disrupts the lives of people aged >60 years. Meanwhile, single-target drugs becoming inapplicable as PD pathogenesis diversifies. Mitochondrial dysfunction and neurotoxicity have been shown to be relevant to the pathogenesis of PD. The novel synthetic compound J24335 (11-Hydroxy-1-(8-methoxy-5-(trifluoromethyl)quinolin-2-yl)undecan-1-one oxime), which has been researched similarly to J2326, has the potential to be a multi-targeted drug and alleviate these lesions. Therefore, we investigated the mechanism of action and potential neuroprotective function of J24335 against 6-OHDA-induced neurotoxicity in mice, and in PC12 cell models. The key target of action of J24335 was also screened. MTT assay, LDH assay, flow cytometry, RT-PCR, LC-MS, OCR and ECAR detection, and Western Blot analysis were performed to characterize the neuroprotective effects of J24335 on PC12 cells and its potential mechanism. Behavioral tests and immunohistochemistry were used to evaluate behavioral changes and brain lesions in mice. Moreover, bioinformatics was employed to assess the drug-likeness of J24335 and screen its potential targets. J24335 attenuated the degradation of mitochondrial membrane potential and enhanced glucose metabolism and mitochondrial biosynthesis to ameliorate 6-OHDA-induced mitochondrial dysfunction. Animal behavioral tests demonstrated that J24335 markedly improved motor function and loss of TH-positive neurons and dopaminergic nerve fibers, and contributed to an increase in the levels of dopamine and its metabolites in brain tissue. The activation of both the CREB/PGC-1α/NRF-1/TFAM and PKA/Akt/GSK-3β pathways was a major contributor to the neuroprotective effects of J24335. Furthermore, bioinformatics predictions revealed that J24335 is a low toxicity and highly BBB permeable compound targeting 8 key genes (SRC, EGFR, ERBB2, SYK, MAPK14, LYN, NTRK1 and PTPN1). Molecular docking suggested a strong and stable binding between J24335 and the 8 core targets. Taken together, our results indicated that J24335, as a multi-targeted neuroprotective agent with promising therapeutic potential for PD, could protect against 6-OHDA-induced neurotoxicity via two potential pathways in mice and PC12 cells.
Collapse
Affiliation(s)
- Zhijian Pan
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Min Shao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Xuanjun Yang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xiaonan Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Qingqing Ye
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Lijun Di
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ji-Wang Chern
- School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan, China
| | - Hefeng Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
4
|
Buss LG, Rheinheimer BA, Limesand KH. Radiation-induced changes in energy metabolism result in mitochondrial dysfunction in salivary glands. Sci Rep 2024; 14:845. [PMID: 38191641 PMCID: PMC10774336 DOI: 10.1038/s41598-023-50877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
Salivary glands are indirectly damaged during radiotherapy for head and neck cancer, resulting in acute and chronic hyposalivation. Current treatments for radiation-induced hyposalivation do not permanently restore function to the gland; therefore, more mechanistic understanding of the damage response is needed to identify therapeutic targets for lasting restoration. Energy metabolism reprogramming has been observed in cancer and wound healing models to provide necessary fuel for cell proliferation; however, there is limited understanding of alterations in energy metabolism reprogramming in tissues that fail to heal. We measured extracellular acidification and oxygen consumption rates, assessed mitochondrial DNA copy number, and tested fuel dependency of irradiated primary salivary acinar cells. Radiation treatment leads to increases in glycolytic flux, oxidative phosphorylation, and ATP production rate at acute and intermediate time points. In contrast, at chronic radiation time points there is a significant decrease in glycolytic flux, oxidative phosphorylation, and ATP production rate. Irradiated salivary glands exhibit significant decreases in spare respiratory capacity and increases in mitochondrial DNA copy number at days 5 and 30 post-treatment, suggesting a mitochondrial dysfunction phenotype. These results elucidate kinetic changes in energy metabolism reprogramming of irradiated salivary glands that may underscore the chronic loss of function phenotype.
Collapse
Affiliation(s)
- Lauren G Buss
- School of Nutritional Sciences and Wellness, University of Arizona, 1177 E 4th St, Shantz Building Room 421, Tucson, AZ, USA
| | - Brenna A Rheinheimer
- School of Nutritional Sciences and Wellness, University of Arizona, 1177 E 4th St, Shantz Building Room 421, Tucson, AZ, USA
| | - Kirsten H Limesand
- School of Nutritional Sciences and Wellness, University of Arizona, 1177 E 4th St, Shantz Building Room 421, Tucson, AZ, USA.
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
5
|
Buss LG, Rheinheimer BA, Limesand KH. Radiation-Induced Changes in Energy Metabolism Result in Mitochondrial Dysfunction in Salivary Glands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568879. [PMID: 38077038 PMCID: PMC10705263 DOI: 10.1101/2023.11.27.568879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Salivary glands are indirectly damaged during radiotherapy for head and neck cancer, resulting in acute and chronic hyposalivation. Current treatments for radiation-induced hyposalivation do not permanently restore function to the gland; therefore, more mechanistic understanding of the damage response is needed to identify therapeutic targets for lasting restoration. Energy metabolism reprogramming has been observed in cancer and wound healing models to provide necessary fuel for cell proliferation; however, there is limited understanding of alterations in energy metabolism reprogramming in tissues that fail to heal. We measured extracellular acidification and oxygen consumption rates, assessed mitochondrial DNA copy number, and tested fuel dependency of irradiated primary salivary acinar cells. Radiation treatment leads to increases in glycolytic flux, oxidative phosphorylation, and ATP production rate at acute and intermediate time points. In contrast, at chronic radiation time points there is a significant decrease in glycolytic flux, oxidative phosphorylation, and ATP production rate. Irradiated salivary glands exhibit significant decreases in spare respiratory capacity and increases in mitochondrial DNA copy number at days 5 and 30 post-treatment, suggesting a mitochondrial dysfunction phenotype. These results elucidate kinetic changes in energy metabolism reprogramming of irradiated salivary glands that may underscore the chronic loss of function phenotype.
Collapse
|
6
|
Mota SI, Fão L, Coelho P, Rego AC. Uncovering the Early Events Associated with Oligomeric Aβ-Induced Src Activation. Antioxidants (Basel) 2023; 12:1770. [PMID: 37760073 PMCID: PMC10525724 DOI: 10.3390/antiox12091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Soluble Aβ1-42 oligomers (AβO) are formed in the early stages of Alzheimer's disease (AD) and were previously shown to trigger enhanced Ca2+ levels and mitochondrial dysfunction via the activation of N-methyl-D-aspartate receptors (NMDAR). Src kinase is a ubiquitous redox-sensitive non-receptor tyrosine kinase involved in the regulation of several cellular processes, which was demonstrated to have a reciprocal interaction towards NMDAR activation. However, little is known about the early-stage mechanisms associated with AβO-induced neurodysfunction involving Src. Thus, in this work, we analysed the influence of brief exposure to oligomeric Aβ1-42 on Src activation and related mechanisms involving mitochondria and redox changes in mature primary rat hippocampal neurons. Data show that brief exposure to AβO induce H2O2-dependent Src activation involving different cellular events, including NMDAR activation and mediated intracellular Ca2+ rise, enhanced cytosolic and subsequent mitochondrial H2O2 levels, accompanied by mild mitochondrial fragmentation. Interestingly, these effects were prevented by Src inhibition, suggesting a feedforward modulation. The current study supports a relevant role for Src kinase activation in promoting the loss of postsynaptic glutamatergic synapse homeostasis involving cytosolic and mitochondrial ROS generation after brief exposure to AβO. Therefore, restoring Src activity can constitute a protective strategy for mitochondria and related hippocampal glutamatergic synapses.
Collapse
Affiliation(s)
- Sandra I. Mota
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Lígia Fão
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Patrícia Coelho
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - A. Cristina Rego
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
7
|
Restored Fyn Levels in Huntington’s Disease Contributes to Enhanced Synaptic GluN2B-Composed NMDA Receptors and CREB Activity. Cells 2022; 11:cells11193063. [PMID: 36231023 PMCID: PMC9563007 DOI: 10.3390/cells11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are important postsynaptic receptors that contribute to normal synaptic function and cell survival; however, when overactivated, as in Huntington’s disease (HD), NMDARs cause excitotoxicity. HD-affected striatal neurons show altered NMDAR currents and augmented ratio of surface to internal GluN2B-containing NMDARs, with augmented accumulation at extrasynaptic sites. Fyn protein is a member of the Src kinase family (SKF) with an important role in NMDARs phosphorylation and synaptic localization and function; recently, we demonstrated that Fyn is reduced in several HD models. Thus, in this study, we aimed to explore the impact of HD-mediated altered Fyn levels at post-synaptic density (PSD), and their role in distorted NMDARs function and localization, and intracellular neuroprotective pathways in YAC128 mouse primary striatal neurons. We show that reduced synaptic Fyn levels and activity in HD mouse striatal neurons is related to decreased phosphorylation of synaptic GluN2B-composed NMDARs; this occurs concomitantly with augmented extrasynaptic NMDARs activity and currents and reduced cAMP response element-binding protein (CREB) activation, along with induction of cell death pathways. Importantly, expression of a constitutive active form of SKF reestablishes NMDARs localization, phosphorylation, and function at PSD in YAC128 mouse neurons. Enhanced SKF levels and activity also promotes CREB activation and reduces caspase-3 activation in YAC128 mouse striatal neurons. This work supports, for the first time, a relevant role for Fyn protein in PSD modulation, controlling NMDARs synaptic function in HD, and favoring neuroprotective pathways and cell survival. In this respect, Fyn Tyr kinase constitutes an important potential HD therapeutic target directly acting at PSD.
Collapse
|