1
|
Luo M, Li L. Association Between Vitamin Intake and Colorectal Cancer: Evidence from NHANES Data. J Gastrointest Cancer 2024; 55:1581-1587. [PMID: 39186233 DOI: 10.1007/s12029-024-01107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE This study aims to investigate the associations between vitamins and colorectal cancer (CRC) based on a national sample of US adults. METHODS A total of 6200 samples were collected from the National Health and Nutrition Examination Survey to explore the relationship between vitamins (specifically, A, C, and D) and CRC. Logistic regression models were employed to assess the associations between dietary vitamin intake and CRC. RESULTS Our findings indicate a negative association between vitamin C intake and CRC. However, the associations of vitamin A and vitamin D with CRC were not statistically significant. For vitamin C, compared to the first tertile, the odds ratios (ORs) and 95% confidence intervals (CIs) were 0.91 (0.76-0.97) for the second tertile and 0.81 (0.64-0.95) for the third tertile (P < 0.01). Conversely, for vitamin A, compared to the first tertile, the odds ratios (ORs) and 95% confidence intervals (CIs) were 1.02 (0.82-1.22) for the second tertile and 1.04 (0.75-1.25) for the third tertile (P < 0.01). For vitamin D, compared to the first tertile, the odds ratios (ORs) and 95% confidence intervals (CIs) were 0.96 (0.84-1.06) for the second tertile and 1.01 (0.83-1.15) for the third tertile (P < 0.01). Additionally, the negative association between vitamin C and CRC was more pronounced among females (0.76, 0.67-0.92), individuals aged 60 and above (0.75, 0.69-0.95), and those with a BMI > 30 (0.78, 0.67-0.93). CONCLUSION Our findings suggest that higher vitamin C intake is associated with a reduced prevalence of CRC. However, further large-scale prospective cohort studies are warranted to validate our results.
Collapse
Affiliation(s)
- Man Luo
- Department of Oncology, Wuhan No. 1 Hospital, Wuhan, China
| | - Lingyi Li
- Department of Dermatology, The Central Hospital of Wuhan, Wuhan, 430000, China.
| |
Collapse
|
2
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
3
|
Li X, Sun X, Chen H, Chen X, Li Y, Li D, Zhang Z, Chen H, Gao Y. Exploring BODIPY derivatives as sonosensitizers for anticancer sonodynamic therapy. Eur J Med Chem 2024; 264:116035. [PMID: 38101040 DOI: 10.1016/j.ejmech.2023.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Sonodynamic therapy (SDT) is an emerging non-invasive and effective therapeutic modality for cancer treatment bearing benefit of deep tissue-penetration in comparison to photo-inspired therapy. However, exploring novel sonosensitizers with high sonosensitivity and desirable biosafety remains a significant challenge. Although boron dipyrromethene (BODIPY) dyes have been widely used in biomedical filed, no BODIPY-based sonosensitizers have been reported yet. Herein, we synthesized four BODIPY dyes (BDP1-BDP4) and investigated their potential applications in SDT. BDP4 exhibited superb sonosensitivity and high SDT efficiency against cancer cells and tumors in tumor-bearing mice. The types of the generated reactive oxygen species, cavitation effect, and cell apoptosis were investigated to figure out the sonodynamic therapeutic mechanisms of BDP4. This work for the first time demonstrates the potential of BODIPY dyes as novel sonosensitizers for SDT, which may pave an avenue for developing more efficient and safer sonosensitizers in future.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China
| | - Hui Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Xinyu Chen
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China
| | - Yuanming Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China
| | - Dongmiao Li
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zizhong Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
4
|
Kancha MM, Mehrabi M, Bitaraf FS, Vahedi H, Alizadeh M, Bernkop-Schnürch A. Preparation, Characterization, and Anticancer Activity Assessment of Chitosan/TPP Nanoparticles Loaded with Echis carinatus Venom. Anticancer Agents Med Chem 2024; 24:533-543. [PMID: 38243949 DOI: 10.2174/0118715206279731231129105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 01/22/2024]
Abstract
AIMS AND BACKGROUND Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.). OBJECTIVE Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects. METHODS In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay. RESULTS The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells. CONCLUSION It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.
Collapse
Affiliation(s)
- Maral Mahboubi Kancha
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hamid Vahedi
- Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| |
Collapse
|
5
|
Zhang Y, Shan L, Yang F, Liu Z, Xu M. Editorial: The pharmacological effects and mechanisms of drugs against human diseases by modulating redox homeostasis. Front Pharmacol 2023; 14:1200137. [PMID: 37521464 PMCID: PMC10381933 DOI: 10.3389/fphar.2023.1200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Ying Zhang
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Luchen Shan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Ming Xu
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
6
|
Yangyanqiu W, Jian C, Yuqing Y, Zhanbo Q, Shuwen H. Gut microbes involvement in gastrointestinal cancers through redox regulation. Gut Pathog 2023; 15:35. [PMID: 37443096 DOI: 10.1186/s13099-023-00562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Gastrointestinal (GI) cancers are among the most common and lethal cancers worldwide. GI microbes play an important role in the occurrence and development of GI cancers. The common mechanisms by which GI microbes may lead to the occurrence and development of cancer include the instability of the microbial internal environment, secretion of cancer-related metabolites, and destabilization of the GI mucosal barrier. In recent years, many studies have found that the relationship between GI microbes and the development of cancer is closely associated with the GI redox level. Redox instability associated with GI microbes may induce oxidative stress, DNA damage, cumulative gene mutation, protein dysfunction and abnormal lipid metabolism in GI cells. Redox-related metabolites of GI microbes, such as short-chain fatty acids, hydrogen sulfide and nitric oxide, which are involved in cancer, may also influence GI redox levels. This paper reviews the redox reactions of GI cells regulated by microorganisms and their metabolites, as well as redox reactions in the cancer-related GI microbes themselves. This study provides a new perspective for the prevention and treatment of GI cancers.
Collapse
Affiliation(s)
- Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Graduate School of Medical College, Zhejiang University, No. 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Yang Yuqing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, Republic of China.
| |
Collapse
|