1
|
Sánchez-Nuño S, Santocildes G, Rebull J, Bardallo RG, Girabent-Farrés M, Viscor G, Carbonell T, Torrella JR. Effects of intermittent exposure to hypobaric hypoxia and cold on skeletal muscle regeneration: Mitochondrial dynamics, protein oxidation and turnover. Free Radic Biol Med 2024; 225:286-295. [PMID: 39313011 DOI: 10.1016/j.freeradbiomed.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Muscle injuries and the subsequent regeneration events compromise muscle homeostasis at morphological, functional and molecular levels. Among the molecular alterations, those derived from the mitochondrial function are especially relevant. We analysed the mitochondrial dynamics, the redox balance, the protein oxidation and the main protein repairing mechanisms after 9 days of injury in the rat gastrocnemius muscle. During the recovery rats were exposed to intermittent cold exposure (ICE), intermittent hypobaric hypoxia (IHH), and both simultaneous combined stimuli. Non-injured contralateral legs were also analysed to evaluate the specific effects of the three environmental exposures. Our results showed that ICE enhanced mitochondrial adaptation by improving the electron transport chain efficiency during muscle recovery, decreased the expression of regulatory subunit of proteasome and accumulated oxidized proteins. Exposure to IHH did not show mitochondrial compensation or increased protein turnover mechanisms; however, no accumulation of oxidized proteins was observed. Both ICE and IHH, when applied separately, elicited an increased expression of eNOS, which could have played an important role in accelerating muscle recovery. The combined effect of ICE and IHH led to a complex response that could potentially impede optimal mitochondrial function and enhanced the accumulation of protein oxidation. These findings underscore the nuanced role of environmental stressors in the muscle healing process and their implications for optimizing recovery strategies.
Collapse
Affiliation(s)
- Sergio Sánchez-Nuño
- Campus Docent Sant Joan de Déu, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), C/ Sant Benito Menni, 18-20, 08830, Sant Boi de Llobregat, Spain
| | - Garoa Santocildes
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Josep Rebull
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Raquel G Bardallo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Montserrat Girabent-Farrés
- Campus Docent Sant Joan de Déu, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), C/ Sant Benito Menni, 18-20, 08830, Sant Boi de Llobregat, Spain
| | - Ginés Viscor
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Joan Ramon Torrella
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
2
|
Wan Y, Cheng J, Gan D, He J, Chen A, Ma J, Li Y, Wang X, Ran J, Chen D, Li J. Brusatol induces ferroptosis to inhibit hepatocellular carcinoma progression by targeting ATF3. Chem Biol Drug Des 2024; 103:e14565. [PMID: 38862254 DOI: 10.1111/cbdd.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/05/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
Ferroptosis is a novel form of programmed cell death that is triggered by iron-dependent lipid peroxidation. Brusatol (BRU), a natural nuclear factor erythroid 2-related factor 2 inhibitor, exhibits potent anticancer effects in various types of cancer. However, the exact mechanism of BRU in the treatment of hepatocellular carcinoma (HCC) remains unknown. The anticancer effects of BRU in HCC were detected using cell counting kit-8 and colony formation assays and a xenograft model. RNA sequencing (RNA-seq) and bioinformatics analyses of HCC cells were utilized to elucidate the mechanism underlying the effects of BRU in HCC. The levels of reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA), and Fe2+ were measured using assay kits. The expression of activating transcription factor 3 (ATF3) was tested using RT-qPCR, western blotting, and immunofluorescence staining. The role of ATF3 in BRU-induced ferroptosis was examined using siATF3. BRU significantly inhibited HCC cell proliferation, both in vitro and in vivo. BRU activated the ferroptosis signaling pathway and increased ATF3 expression. Furthermore, ATF3 knockdown impeded BRU-induced ferroptosis. BRU suppressed HCC growth through ATF3-mediated ferroptosis, supporting BRU as a promising therapeutic agent for HCC.
Collapse
Affiliation(s)
- Yuanyuan Wan
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jingsong Cheng
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- The Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Debiao Gan
- Chengde Medical University, Chengde, China
| | - Jiaming He
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - An Chen
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Ma
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yunying Li
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xiao Wang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Jianhua Ran
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Dilong Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Hu H, Zhang J, Xin X, Jin Y, Zhu Y, Zhang H, Fan R, Ye Y, Li D. Efficacy of natural products on premature ovarian failure: a systematic review and meta-analysis of preclinical studies. J Ovarian Res 2024; 17:46. [PMID: 38378652 PMCID: PMC10877904 DOI: 10.1186/s13048-024-01369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE This study aims to investigate the effects of natural products on animal models of premature ovarian failure (POF). METHODS We conducted comprehensive literature searches and identified relevant studies that examined the protective effects of natural products on experimental POF. We extracted quantitative data on various aspects such as follicular development, ovarian function, physical indicators, oxidative stress markers, inflammatory factors, and protein changes. The data was analyzed using random-effects meta-analyses, calculating pooled standardized mean differences and 95% confidence intervals. Heterogeneity was assessed using the I2 statistic, and bias was estimated using the SYRCLE tool. RESULTS Among the 879 reviewed records, 25 articles met our inclusion criteria. These findings demonstrate that treatment with different phytochemicals and marine natural products (flavonoids, phenols, peptides, and alkaloids, etc.) significantly improved various aspects of ovarian function compared to control groups. The treatment led to an increase in follicle count at different stages, elevated levels of key hormones, and a decrease in atretic follicles and hormone levels associated with POF. This therapy also reduced oxidative stress (specifically polyphenols, resveratrol) and apoptotic cell death (particularly flavonoids, chrysin) in ovarian granulosa cells, although it showed no significant impact on inflammatory responses. The certainty of evidence supporting these findings ranged from low to moderate. CONCLUSIONS Phytochemicals and marine natural product therapy (explicitly flavonoids, phenols, peptides, and alkaloids) has shown potential in enhancing folliculogenesis and improving ovarian function in animal models of POF. These findings provide promising strategies to protect ovarian reserve and reproductive health. Targeting oxidative stress and apoptosis pathways may be the underlying mechanism.
Collapse
Affiliation(s)
- Hangqi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jiacheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Xiyan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yuxin Jin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yutian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Haolin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ruiwen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|