1
|
Baqué M, Verseux C, Böttger U, Rabbow E, de Vera JPP, Billi D. Preservation of Biomarkers from Cyanobacteria Mixed with Mars-Like Regolith Under Simulated Martian Atmosphere and UV Flux. ORIGINS LIFE EVOL B 2016; 46:289-310. [PMID: 26530341 DOI: 10.1007/s11084-015-9467-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/27/2015] [Indexed: 02/05/2023]
Abstract
The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m(2) of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.
Collapse
Affiliation(s)
- Mickael Baqué
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cyprien Verseux
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - Elke Rabbow
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | | | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Rome, Italy.
| |
Collapse
|
2
|
Zhang H, Liu H, Lu Y, Wolf NR, Gross ML, Blankenship RE. Native mass spectrometry and ion mobility characterize the orange carotenoid protein functional domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:734-9. [PMID: 26921809 DOI: 10.1016/j.bbabio.2016.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 01/05/2023]
Abstract
Orange Carotenoid Protein (OCP) plays a unique role in protecting many cyanobacteria from light-induced damage. The active form of OCP is directly involved in energy dissipation by binding to the phycobilisome (PBS), the major light-harvesting complex in cyanobacteria. There are two structural modules in OCP, an N-terminal domain (NTD), and a C-terminal domain (CTD), which play different functional roles during the OCP-PBS quenching cycle. Because of the quasi-stable nature of active OCP, structural analysis of active OCP has been lacking compared to its inactive form. In this report, partial proteolysis was used to generate two structural domains, NTD and CTD, from active OCP. We used multiple native mass spectrometry (MS) based approaches to interrogate the structural features of the NTD and the CTD. Collisional activation and ion mobility analysis indicated that the NTD releases its bound carotenoid without forming any intermediates and the CTD is resistant to unfolding upon collisional energy ramping. The unfolding intermediates observed in inactive intact OCP suggest that it is the N-terminal extension and the NTD-CTD loop that lead to the observed unfolding intermediates. These combined approaches extend the knowledge of OCP photo-activation and structural features of OCP functional domains. Combining native MS, ion mobility, and collisional activation promises to be a sensitive new approach for studies of photosynthetic protein-pigment complexes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yue Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nathan R Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
3
|
Srivastava A, Tiwari R, Srivastava V, Singh TB, Asthana RK. Fresh Water Cyanobacteria Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 as an Anticancer Drug Resource. PLoS One 2015; 10:e0136838. [PMID: 26325186 PMCID: PMC4567175 DOI: 10.1371/journal.pone.0136838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
An increasing number of cancer patients worldwide, especially in third world countries, have raised concern to explore natural drug resources, such as the less explored fresh water filamentous cyanobacteria. Six strains of cyanobacteria (Phormidium sp. CCC727, Geitlerinema sp. CCC728, Arthrospira sp. CCC729, Phormidium sp. CCC731, Phormidium sp. CCC730, and Leptolyngbya sp. CCC732) were isolated (paddy fields and ponds in the Banaras Hindu University, campus) and five strains screened for anticancer potential using human colon adenocarcinoma (HT29) and human kidney adenocarcinoma (A498) cancer cell lines. Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 were the most potent as determined by examination of morphological features and by inhibition of growth by graded concentrations of crude extracts and thin-layer chromatography (TLC) eluates. Cell cycle analysis and multiplex assays using cancer biomarkers also confirmed Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 as cancer drug resources. Apoptotic studies in the cells of A498 (cancer) and MCF-10A (normal human epithelial) exposed to crude extracts and TLC fractions revealed no significant impact on MCF-10A cells emphasizing its importance in the development of anticancer drug. Identification of biomolecules from these extracts are in progress.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Centre of Advanced Study in Botany, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ratnakar Tiwari
- Council Scientific and Industrial Research, Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Vikas Srivastava
- Council Scientific and Industrial Research, Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Tej Bali Singh
- Division of statistics, Institute of Medical science, Banaras Hindu University, Varanasi, 221005, India
| | - Ravi Kumar Asthana
- Centre of Advanced Study in Botany, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
- * E-mail:
| |
Collapse
|
4
|
Emergence of Animals from Heat Engines – Part 1. Before the Snowball Earths. ENTROPY 2009. [DOI: 10.3390/e11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|