Lammer H, Selsis F, Chassefière E, Breuer D, Griessmeier JM, Kulikov YN, Erkaev NV, Khodachenko ML, Biernat HK, Leblanc F, Kallio E, Lundin R, Westall F, Bauer SJ, Beichman C, Danchi W, Eiroa C, Fridlund M, Gröller H, Hanslmeier A, Hausleitner W, Henning T, Herbst T, Kaltenegger L, Léger A, Leitzinger M, Lichtenegger HIM, Liseau R, Lunine J, Motschmann U, Odert P, Paresce F, Parnell J, Penny A, Quirrenbach A, Rauer H, Röttgering H, Schneider J, Spohn T, Stadelmann A, Stangl G, Stam D, Tinetti G, White GJ. Geophysical and atmospheric evolution of habitable planets.
ASTROBIOLOGY 2010;
10:45-68. [PMID:
20307182 DOI:
10.1089/ast.2009.0368]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.
Collapse