1
|
Amaral CRL, Bones FLV, Freitas ACDE, Goldenberg-Barbosa R, Magalhães MGP, Moreira LM, Anjos D, Donato A, Amorim A, Câmara PEAS. Antarctic nematodes survival in Martian and Lunar regolith simulants under terrestrial conditions. AN ACAD BRAS CIENC 2025; 96:e20240532. [PMID: 39813479 DOI: 10.1590/0001-3765202420240532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/29/2024] [Indexed: 01/18/2025] Open
Abstract
The exploration of extraterrestrial environments has become a focal point of scientific inquiry, driven by advancements in technology and a growing interest in the potential for life beyond Earth. This study investigates the adaptability of Antarctic nematodes, known for thriving in extreme cold and isolation, to simulated Martian (MGS-1) and Lunar (LMS-1) soils. The experiment revealed differential responses in nematode survivability to the two simulants, with Lunar soil demonstrating better adaptability compared to Martian soil. Our study provides valuable insights into the potential survivability of Antarctic nematodes on real Martian and Lunar substrates with the use of the MGS-1 and the LMS-1 under terrestrial conditions. The observed results suggest differential survival responses to Lunar (6.92 ± 0.74) and Martian (5.58 ± 1.91) regolith simulants and highlight the complexity of factors influencing organismal survival. Considering their crucial role in soil food webs, and their relation with nutrient cycling and carbon dioxide emissions, the observed capacity of nematodes to thrive in Martian and Lunar regoliths positions them as potential candidates to sustain human habitats, helping on the development of in-situ resource utilization (ISRU) systems, and forming the basis for a biological life-support system to facilitate human survival in extraterrestrial environments.
Collapse
Affiliation(s)
- Cesar R L Amaral
- Universidade do Estado do Rio de Janeiro, Núcleo de Genética Molecular Ambiental e Astrobiologia, Departamento de Biofísica e Biometria, Laboratório de Radioecologia e Mudanças Globais, Pavilhão Haroldo Lisboa da Cunha - PHLC, Subsolo, Rua São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Fábio L V Bones
- Universidade Federal de Santa Catarina, Programa de Pós-graduação em Algas Fungos e Plantas, Campus Universitário, s/n, Sala 208, Bloco E, Prédio Administrativo - Córrego Grande, 88040-900 Florianópolis, SC, Brazil
| | - Antonio Carlos DE Freitas
- Universidade do Estado do Rio de Janeiro, Núcleo de Fotografia Científica Ambiental Biocenas, Departamento de Biofísica e Biometria, Laboratório de Radioecologia e Mudanças Globais, Pavilhão Haroldo Lisboa da Cunha - PHLC, Subsolo, Rua São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Rodrigo Goldenberg-Barbosa
- Universidade do Estado do Rio de Janeiro, Núcleo de Genética Molecular Ambiental e Astrobiologia, Departamento de Biofísica e Biometria, Laboratório de Radioecologia e Mudanças Globais, Pavilhão Haroldo Lisboa da Cunha - PHLC, Subsolo, Rua São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Ecologia e Evolução, Pavilhão Haroldo Lisboa da Cunha - PHLC, 2° Andar, Rua São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Maithê G P Magalhães
- Instituto Oswaldo Cruz (IOC/Fiocruz), Laboratório de Genômica Aplicada e BioInovações, Pavilhão Leônidas Deane, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Lucas M Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Dafne Anjos
- Universidade do Estado do Rio de Janeiro, Núcleo de Genética Molecular Ambiental e Astrobiologia, Departamento de Biofísica e Biometria, Laboratório de Radioecologia e Mudanças Globais, Pavilhão Haroldo Lisboa da Cunha - PHLC, Subsolo, Rua São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Mestrado Profissional em Saúde, Medicina Laboratorial e Tecnologia Forense, Pavilhão José Roberto Feresin Moraes, Policlínica Universitária Piquet Carneiro, Av. Marechal Rondon, 381, São Francisco Xavier, 20950-003 Rio de Janeiro, RJ, Brazil
| | - Anna Donato
- Universidade do Estado do Rio de Janeiro, Núcleo de Genética Molecular Ambiental e Astrobiologia, Departamento de Biofísica e Biometria, Laboratório de Radioecologia e Mudanças Globais, Pavilhão Haroldo Lisboa da Cunha - PHLC, Subsolo, Rua São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Ecologia e Evolução, Pavilhão Haroldo Lisboa da Cunha - PHLC, 2° Andar, Rua São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
| | - Antonio Amorim
- University of Porto, Faculty of Sciences, Campo Alegre Street, 4169-007 Porto, Portugal
| | - Paulo E A S Câmara
- Universidade de Brasília, Laboratório de Criptógamas, Departamento de Botânica, Campus Universitário Darcy Ribeiro, Bloco D, 1° Andar, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
2
|
Yang Q, Zhong R, Chang W, Chen K, Wang M, Yuan S, Liang Z, Wang W, Wang C, Tong G, Zhang T, Sun Y. WormSpace μ-TAS enabling automated on-chip multi-strain culturing and multi-function imaging of Caenorhabditis elegans at the single-worm level on the China Space Station. LAB ON A CHIP 2024; 24:3388-3402. [PMID: 38818738 DOI: 10.1039/d4lc00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
As a model organism for space biology experiments, Caenorhabditis elegans (C. elegans) has low demand for life support and strong resistance to unfavorable environments, making experimentation with C. elegans relatively easy and cost-effective. Previously, C. elegans has been flown in several spaceflight investigations, but there is still an urgent need for analytical platforms enabling on-orbit automated monitoring of multiple phenotypes of worms, such as growth and development, movement, changes of biomarkers, etc. To solve this problem, we presented a fully integrated microfluidic system (WormSpace μ-TAS) with an arrayed microfluidic chip (WormChip-4.8.1) and a replaceable microfluidic module (WormChip cartridge), which was compatible with the experimental facility on the China Space Station (CSS). By adopting technologies of programmed fluid control based on liquid medium CeMM as well as multi-function imaging with a camera mounted on a three-dimensional (3D) transportation stage, automated and long-term experimentation can be performed for on-chip multi-strain culturing and bright-field and fluorescence imaging of C. elegans at the single-worm level. The presented WormSpace μ-TAS enabled its successful application on the CSS, achieving flight launch of the sample unit (WormChip cartridge) at low temperature (controlled by a passive thermal case at 12 °C), automated 30-day cultivation of 4 strains of C. elegans, on-orbit monitoring of multiple phenotypes (growth and development, movement, and changes of fluorescent protein expression) at the single worm-level, on-chip fixation of animals at the end of the experiment and returning the fixed samples to earth. In summary, this study presented a verified microfluidic system and experimental protocols for automated on-chip multi-strain culturing and multi-function imaging of C. elegans at the single-worm level on the CSS. The WormSpace μ-TAS will provide a novel experimental platform for the study of biological effects of space radiation and microgravity, and for the development of protective drugs.
Collapse
Affiliation(s)
- Qianqian Yang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Runtao Zhong
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Wenbo Chang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Kexin Chen
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Mengyu Wang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Shuqi Yuan
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Zheng Liang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Wei Wang
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| | - Chao Wang
- National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China
| | - Guanghui Tong
- Institute of Technical Physics, Chinese Academy of Science, 200083 Shanghai, China
| | - Tao Zhang
- Institute of Technical Physics, Chinese Academy of Science, 200083 Shanghai, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, 116026 Dalian, China.
| |
Collapse
|
3
|
Wang Q, Liang M, Xiao Y, Li Z, Chen X, Cheng P, Qi B, Yu Y, Lei T, Huang Z. In silico and in vivo discovery of antioxidant sea cucumber peptides with antineurodegenerative properties. Food Funct 2024; 15:5972-5986. [PMID: 38739010 DOI: 10.1039/d4fo01542h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Since oxidative stress is often associated with neurodegenerative diseases, antioxidants are likely to confer protection against neurodegeneration. Despite an increasing number of food-derived peptides being identified as antioxidants, their antineurodegenerative potentials remain largely unexplored. Here, a sea cucumber peptide preparation - the peptide-rich fraction of <3 kDa (UF<3K) obtained by ultrafiltration from Apostichopus japonicus protein hydrolyzate - was found to protect PC12 cells and Caenorhabditis elegans from neurodegeneration by reducing oxidative stress and apoptosis, demonstrating its in vitro and in vivo neuroprotective effects. As many food-originated peptides are cryptides (cryptic peptides - short amino acid sequences encrypted in parent proteins) released in quantities by protein hydrolysis, UF<3K was subjected to sequencing analysis. As expected, a large repertoire of peptides were identified in UF<3K, establishing a sea cucumber cryptome (1238 peptides in total). Then 134 peptides were randomly selected from the cryptome (>10%) and analyzed for their antioxidant activities using a number of in silico bioinformatic programs as well as in vivo experimental assays in C. elegans. From these results, a novel antioxidant peptide - HoloPep#362 (FETLMPLWGNK) - was shown to not only inhibit aggregation of neurodegeneration-associated polygluatmine proteins but also ameliorate behavioral deficits in proteotoxicity nematodes. Proteomic analysis revealed an increased expression of several lysosomal proteases by HoloPep#362, suggesting proteostasis maintenance as a mechanism for its antineurodegenerative action. These findings provide an insight into the health-promoting potential of sea cucumber peptides as neuroprotective nutraceuticals and also into the importance of training in silico peptide bioactivity prediction programs with in vivo experimental data.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Ming Liang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- Research and Development Center, Infinitus (China) Company Ltd, Guangzhou 510405, China
| | - Yue Xiao
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Zhenhua Li
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaohe Chen
- Rehabilitation Department, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Center, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - Peng Cheng
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing Qi
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Yu
- Research and Development Center, Infinitus (China) Company Ltd, Guangzhou 510405, China
| | - Tao Lei
- Rehabilitation Department, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Center, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
4
|
Soni P, Edwards H, Anupom T, Rahman M, Lesanpezeshki L, Blawzdziewicz J, Cope H, Gharahdaghi N, Scott D, Toh LS, Williams PM, Etheridge T, Szewczyk N, Willis CRG, Vanapalli SA. Spaceflight Induces Strength Decline in Caenorhabditis elegans. Cells 2023; 12:2470. [PMID: 37887314 PMCID: PMC10605753 DOI: 10.3390/cells12202470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Background: Understanding and countering the well-established negative health consequences of spaceflight remains a primary challenge preventing safe deep space exploration. Targeted/personalized therapeutics are at the forefront of space medicine strategies, and cross-species molecular signatures now define the 'typical' spaceflight response. However, a lack of direct genotype-phenotype associations currently limits the robustness and, therefore, the therapeutic utility of putative mechanisms underpinning pathological changes in flight. Methods: We employed the worm Caenorhabditis elegans as a validated model of space biology, combined with 'NemaFlex-S' microfluidic devices for assessing animal strength production as one of the most reproducible physiological responses to spaceflight. Wild-type and dys-1 (BZ33) strains (a Duchenne muscular dystrophy (DMD) model for comparing predisposed muscle weak animals) were cultured on the International Space Station in chemically defined media before loading second-generation gravid adults into NemaFlex-S devices to assess individual animal strength. These same cultures were then frozen on orbit before returning to Earth for next-generation sequencing transcriptomic analysis. Results: Neuromuscular strength was lower in flight versus ground controls (16.6% decline, p < 0.05), with dys-1 significantly more (23% less strength, p < 0.01) affected than wild types. The transcriptional gene ontology signatures characterizing both strains of weaker animals in flight strongly corroborate previous results across species, enriched for upregulated stress response pathways and downregulated mitochondrial and cytoskeletal processes. Functional gene cluster analysis extended this to implicate decreased neuronal function, including abnormal calcium handling and acetylcholine signaling, in space-induced strength declines under the predicted control of UNC-89 and DAF-19 transcription factors. Finally, gene modules specifically altered in dys-1 animals in flight again cluster to neuronal/neuromuscular pathways, suggesting strength loss in DMD comprises a strong neuronal component that predisposes these animals to exacerbated strength loss in space. Conclusions: Highly reproducible gene signatures are strongly associated with space-induced neuromuscular strength loss across species and neuronal changes in calcium/acetylcholine signaling require further study. These results promote targeted medical efforts towards and provide an in vivo model for safely sending animals and people into deep space in the near future.
Collapse
Affiliation(s)
- Purushottam Soni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Hunter Edwards
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Taslim Anupom
- Department of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA;
- Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
| | - Nima Gharahdaghi
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
| | - Daniel Scott
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Li Shean Toh
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.T.); (P.M.W.)
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.T.); (P.M.W.)
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
| | - Nathaniel Szewczyk
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (H.C.); (N.G.)
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Craig R. G. Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (P.S.); (M.R.); (L.L.)
| |
Collapse
|
5
|
Çelen İ, Jayasinghe A, Doh JH, Sabanayagam CR. Transcriptomic Signature of the Simulated Microgravity Response in Caenorhabditis elegans and Comparison to Spaceflight Experiments. Cells 2023; 12:270. [PMID: 36672205 PMCID: PMC9856674 DOI: 10.3390/cells12020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Given the growing interest in human exploration of space, it is crucial to identify the effects of space conditions on biological processes. Here, we analyze the transcriptomic response of Caenorhabditis elegans to simulated microgravity and observe the maintained transcriptomic response after returning to ground conditions for four, eight, and twelve days. We show that 75% of the simulated microgravity-induced changes on gene expression persist after returning to ground conditions for four days while most of these changes are reverted after twelve days. Our results from integrative RNA-seq and mass spectrometry analyses suggest that simulated microgravity affects longevity-regulating insulin/IGF-1 and sphingolipid signaling pathways. Finally, we identified 118 genes that are commonly differentially expressed in simulated microgravity- and space-exposed worms. Overall, this work provides insight into the effect of microgravity on biological systems during and after exposure.
Collapse
Affiliation(s)
- İrem Çelen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Aroshan Jayasinghe
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Jung H. Doh
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | |
Collapse
|
6
|
Soni P, Anupom T, Lesanpezeshki L, Rahman M, Hewitt JE, Vellone M, Stodieck L, Blawzdziewicz J, Szewczyk NJ, Vanapalli SA. Microfluidics-integrated spaceflight hardware for measuring muscle strength of Caenorhabditis elegans on the International Space Station. NPJ Microgravity 2022; 8:50. [PMID: 36344513 PMCID: PMC9640571 DOI: 10.1038/s41526-022-00241-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Caenorhabditis elegans is a low-cost genetic model that has been flown to the International Space Station to investigate the influence of microgravity on changes in the expression of genes involved in muscle maintenance. These studies showed that genes that encode muscle attachment complexes have decreased expression under microgravity. However, it remains to be answered whether the decreased expression leads to concomitant changes in animal muscle strength, specifically across multiple generations. We recently reported the NemaFlex microfluidic device for the measurement of muscle strength of C. elegans (Rahman et al., Lab Chip, 2018). In this study, we redesign our original NemaFlex device and integrate it with flow control hardware for spaceflight investigations considering mixed animal culture, constraints on astronaut time, crew safety, and on-orbit operations. The technical advances we have made include (i) a microfluidic device design that allows animals of a given size to be sorted from unsynchronized cultures and housed in individual chambers, (ii) a fluid handling protocol for injecting the suspension of animals into the microfluidic device that prevents channel clogging, introduction of bubbles, and crowding of animals in the chambers, and (iii) a custom-built worm-loading apparatus interfaced with the microfluidic device that allows easy manipulation of the worm suspension and prevents fluid leakage into the surrounding environment. Collectively, these technical advances enabled the development of new microfluidics-integrated hardware for spaceflight studies in C. elegans. Finally, we report Earth-based validation studies to test this new hardware, which has led to it being flown to the International Space Station.
Collapse
|
7
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Kalichamy SS, Alcantara AV, Yoon KH, Lee JI. A Simple Protocol to Analyze the Effects of Simulated Microgravity on Nematodes. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021150097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Willis CRG, Szewczyk NJ, Costes SV, Udranszky IA, Reinsch SS, Etheridge T, Conley CA. Comparative Transcriptomics Identifies Neuronal and Metabolic Adaptations to Hypergravity and Microgravity in Caenorhabditis elegans. iScience 2020; 23:101734. [PMID: 33376968 PMCID: PMC7756135 DOI: 10.1016/j.isci.2020.101734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Deep space exploration is firmly within reach, but health decline during extended spaceflight remains a key challenge. In this study, we performed comparative transcriptomic analysis of Caenorhabditis elegans responses to varying degrees of hypergravity and to two spaceflight experiments (ICE-FIRST and CERISE). We found that progressive hypergravitational load concomitantly increases the extent of differential gene regulation and that subtle changes in ∼1,000 genes are reproducibly observed during spaceflight-induced microgravity. Consequently, we deduce those genes that are concordantly regulated by altered gravity per se or that display inverted expression profiles during hypergravity versus microgravity. Through doing so, we identify several candidate targets with terrestrial roles in neuronal function and/or cellular metabolism, which are linked to regulation by daf-16/FOXO signaling. These data offer a strong foundation from which to expedite mechanistic understanding of spaceflight-induced maladaptation in higher organisms and, ultimately, promote future targeted therapeutic development. Comparative transcriptomics in C. elegans exposed to hypergravity and spaceflight Bioinformatics identifies novel putative regulators of altered gravitational load Candidate molecules infer a close gravity > daf-16/FOXO > neuronal link
Collapse
Affiliation(s)
- Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Nathaniel J Szewczyk
- MRC-ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, DE22 3DT, UK.,Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, OH 43147, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Sigrid S Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Catharine A Conley
- Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
10
|
Clément GR, Boyle RD, George KA, Nelson GA, Reschke MF, Williams TJ, Paloski WH. Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 2020; 123:2037-2063. [DOI: 10.1152/jn.00476.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Space travel presents a number of environmental challenges to the central nervous system, including changes in gravitational acceleration that alter the terrestrial synergies between perception and action, galactic cosmic radiation that can damage sensitive neurons and structures, and multiple factors (isolation, confinement, altered atmosphere, and mission parameters, including distance from Earth) that can affect cognition and behavior. Travelers to Mars will be exposed to these environmental challenges for up to 3 years, and space-faring nations continue to direct vigorous research investments to help elucidate and mitigate the consequences of these long-duration exposures. This article reviews the findings of more than 50 years of space-related neuroscience research on humans and animals exposed to spaceflight or analogs of spaceflight environments, and projects the implications and the forward work necessary to ensure successful Mars missions. It also reviews fundamental neurophysiology responses that will help us understand and maintain human health and performance on Earth.
Collapse
Affiliation(s)
| | - Richard D. Boyle
- National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California
| | | | - Gregory A. Nelson
- Division of Biomedical Engineering Sciences, School of Medicine Loma Linda University, Loma Linda, California
| | - Millard F. Reschke
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - Thomas J. Williams
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - William H. Paloski
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| |
Collapse
|
11
|
de Souza TAJ, Pereira TC. Caenorhabditis elegans Tolerates Hyperaccelerations up to 400,000 x g. ASTROBIOLOGY 2018; 18:825-833. [PMID: 29746159 DOI: 10.1089/ast.2017.1802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One of the most important laboratory animal species is the nematode Caenorhabditis elegans, which has been used in a range of research fields such as neurobiology, body development, and molecular biology. The scientific progress obtained by employing C. elegans as a model in these areas has encouraged its use in new fields. One of the new potential applications concerns the biological responses to hyperacceleration stress (g-force), but only a few studies have evaluated the response of multicellular organisms to extreme hypergravity conditions at the order of magnitude 105 x g, which is the theorized force experienced by rocks ejected from Mars (or similar planets). Therefore, we subjected the nematode C. elegans to 400,000 x g (equivalent to that force) and evaluated viability, general morphology, and behavior of C. elegans after exposure to this stress. The metabolic activity of this nematode in response to the gravitational spectrum of 50-400,000 x g was also evaluated by means of the MTT assay. Surprisingly, we found that this organism showed no decrease in viability, no changes in behavior and development, and no drastic metabolic depression after hyperacceleration. Thus, we demonstrated for the first time that this multicellular research model can withstand extremely high g-forces, which prompts the use of C. elegans as a new model for extreme hypergravity. Key Words: Caenorhabditis elegans-Hypergravity-Ultracentrifugation-Acceleration-Panspermia-Astrobiology. Astrobiology 18, 825-833.
Collapse
Affiliation(s)
- Tiago Alves Jorge de Souza
- 1 Department of Genetics, Graduate Program in Genetics, FMRP, University of São Paulo , Ribeirao Preto, Brazil
- 2 Department of Biology, FFCLRP, University of São Paulo , Ribeirao Preto, Brazil
| | - Tiago Campos Pereira
- 1 Department of Genetics, Graduate Program in Genetics, FMRP, University of São Paulo , Ribeirao Preto, Brazil
- 2 Department of Biology, FFCLRP, University of São Paulo , Ribeirao Preto, Brazil
| |
Collapse
|
12
|
Tee LF, Neoh HM, Then SM, Murad NA, Asillam MF, Hashim MH, Nathan S, Jamal R. Effects of simulated microgravity on gene expression and biological phenotypes of a single generation Caenorhabditis elegans cultured on 2 different media. LIFE SCIENCES IN SPACE RESEARCH 2017; 15:11-17. [PMID: 29198309 DOI: 10.1016/j.lssr.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity lead to higher expression of non-coding RNA genes, which may play an epigenetic role in the worms during longer terms of microgravity exposure.
Collapse
Affiliation(s)
- Ling Fei Tee
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Malaysia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Malaysia.
| | - Sue Mian Then
- Department of Biomedical Sciences, The University of Nottingham, Malaysia
| | - Nor Azian Murad
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Malaysia
| | - Mohd Fairos Asillam
- National Space Agency, Ministry of Science, Technology & Innovation, Malaysia
| | - Mohd Helmy Hashim
- National Space Agency, Ministry of Science, Technology & Innovation, Malaysia
| | - Sheila Nathan
- Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Malaysia.
| |
Collapse
|
13
|
Saldanha JN, Pandey S, Powell-Coffman JA. The effects of short-term hypergravity on Caenorhabditis elegans. LIFE SCIENCES IN SPACE RESEARCH 2016; 10:38-46. [PMID: 27662786 DOI: 10.1016/j.lssr.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 02/08/2023]
|
14
|
Xiang Y, Zhang J, Li H, Wang Q, Xiao L, Weng H, Zhou X, Ma CW, Ma F, Hu M, Huang Z. Epimedium Polysaccharide Alleviates Polyglutamine-Induced Neurotoxicity in Caenorhabditis elegans by Reducing Oxidative Stress. Rejuvenation Res 2016; 20:32-41. [PMID: 27222166 DOI: 10.1089/rej.2016.1830] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epimedium has been traditionally used to treat a variety of medical conditions, including neurological disorders. In this study, an acidic polysaccharide EbPS-A1 is isolated from Epimedium brevicornum and found to contain mainly galacturonic acid, galactose, and rhamnose but also arabinose and glucuronic acid. Using Caenorhabditis elegans models, we show that EbPS-A1 is capable of inhibiting behavioral dysfunction mediated by polyglutamine (polyQ), which is implicated in several neurodegenerative disorders such as Huntington's disease. Interestingly, EbPS-A1 does not inhibit polyQ aggregation or extend lifespan in the nematodes; it does, however, improve the survival under increased oxidative stress of both polyQ and wild-type nematodes intoxicated by paraquat. Further studies reveal that EbPS-A1 is capable of not only scavenging free radicals in vitro but also reducing reactive oxygen species levels, enhancing antioxidant enzyme activities, and decreasing lipid peroxidation product in C. elegans models. Together, these results suggest that the protective effect of Epimedium polysaccharide against polyQ-mediated neurotoxicity is likely due to its antioxidant function.
Collapse
Affiliation(s)
- Yanxia Xiang
- 1 School of Pharmaceutical Sciences, Wuhan University , Wuhan, China
- 2 Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University , Guangzhou, China
| | - Ju Zhang
- 1 School of Pharmaceutical Sciences, Wuhan University , Wuhan, China
- 2 Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University , Guangzhou, China
| | - Haifeng Li
- 1 School of Pharmaceutical Sciences, Wuhan University , Wuhan, China
- 2 Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University , Guangzhou, China
| | - Qiangqiang Wang
- 1 School of Pharmaceutical Sciences, Wuhan University , Wuhan, China
- 3 Research & Development Center , Infinitus (China) Company Ltd., Guangzhou, China
| | - Lingyun Xiao
- 1 School of Pharmaceutical Sciences, Wuhan University , Wuhan, China
- 3 Research & Development Center , Infinitus (China) Company Ltd., Guangzhou, China
| | - Huandi Weng
- 2 Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University , Guangzhou, China
- 4 Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University , Guangzhou, China
| | - Xiaobin Zhou
- 2 Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University , Guangzhou, China
- 4 Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University , Guangzhou, China
| | - Chung Wah Ma
- 3 Research & Development Center , Infinitus (China) Company Ltd., Guangzhou, China
| | - Fangli Ma
- 3 Research & Development Center , Infinitus (China) Company Ltd., Guangzhou, China
| | - Minghua Hu
- 3 Research & Development Center , Infinitus (China) Company Ltd., Guangzhou, China
| | - Zebo Huang
- 1 School of Pharmaceutical Sciences, Wuhan University , Wuhan, China
- 2 Center for Bioresources & Drug Discovery and School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University , Guangzhou, China
- 4 Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University , Guangzhou, China
| |
Collapse
|
15
|
Wang Q, Yang F, Guo W, Zhang J, Xiao L, Li H, Jia W, Huang Z. Caenorhabditis elegans in Chinese medicinal studies: making the case for aging and neurodegeneration. Rejuvenation Res 2014; 17:205-8. [PMID: 24125529 DOI: 10.1089/rej.2013.1512] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aging is a progressive process with degenerative changes of various tissues and organs. As a classic model organism in genetics and neurobiology, Caenorhabditis elegans is also a powerful system in aging and behavioral studies and can be used at both the molecular and organismal levels to evaluate potential therapeutics for age-related neurodegeneration, owing to its short life span, relative simplicity, and high degree of experimental tractability as well as significant conservation of disease genes and signaling pathways with humans. We attempt here to summarize the use of C. elegans models in exploring traditional Chinese medicine for potential remedies against aging and neurodegeneration.
Collapse
Affiliation(s)
- Qiangqiang Wang
- 1 Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University , Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hammond TG, Stodieck L, Birdsall HH, Becker JL, Koenig P, Hammond JS, Gunter MA, Allen PL. Effects of microgravity on the virulence of Listeria monocytogenes, Enterococcus faecalis, Candida albicans, and methicillin-resistant Staphylococcus aureus. ASTROBIOLOGY 2013; 13:1081-90. [PMID: 24283929 DOI: 10.1089/ast.2013.0986] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To evaluate effects of microgravity on virulence, we studied the ability of four common clinical pathogens--Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and Candida albicans--to kill wild type Caenorhabditis elegans (C. elegans) nematodes at the larval and adult stages. Simultaneous studies were performed utilizing spaceflight, clinorotation in a 2-D clinorotation device, and static ground controls. The feeding rate of worms for killed E. coli was unaffected by spaceflight or clinorotation. Nematodes, microbes, and growth media were separated until exposed to true or modeled microgravity, then mixed and grown for 48 h. Experiments were terminated by paraformaldehyde fixation, and optical density measurements were used to assay residual microorganisms. Spaceflight was associated with reduced virulence for Listeria, Enterococcus, MRSA, and Candida for both larval and adult C. elegans. These are the first data acquired with a direct in vivo assay system in space to demonstrate virulence. Clinorotation reproduced the effects of spaceflight in some, but not all, virulence assays: Candida and Enterococcus were less virulent for larval worms but not adult worms, whereas virulence of MRSA and Listeria were unaffected by clinorotation in tests with both adult and larval worms. We conclude that four common clinical microorganisms are all less virulent in space.
Collapse
Affiliation(s)
- Timothy G Hammond
- 1 Durham VA Medical Center, Research and Development Service, Duke University School of Medicine , Durham, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|