1
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Shen J, Paterson GA, Wang Y, Kirschvink JL, Pan Y, Lin W. Renaissance for magnetotactic bacteria in astrobiology. THE ISME JOURNAL 2023; 17:1526-1534. [PMID: 37592065 PMCID: PMC10504353 DOI: 10.1038/s41396-023-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Capable of forming magnetofossils similar to some magnetite nanocrystals observed in the Martian meteorite ALH84001, magnetotactic bacteria (MTB) once occupied a special position in the field of astrobiology during the 1990s and 2000s. This flourish of interest in putative Martian magnetofossils faded from all but the experts studying magnetosome formation, based on claims that abiotic processes could produce magnetosome-like magnetite crystals. Recently, the rapid growth in our knowledge of the extreme environments in which MTB thrive and their phylogenic heritage, leads us to advocate for a renaissance of MTB in astrobiology. In recent decades, magnetotactic members have been discovered alive in natural extreme environments with wide ranges of salinity (up to 90 g L-1), pH (1-10), and temperature (0-70 °C). Additionally, some MTB populations are found to be able to survive irradiated, desiccated, metal-rich, hypomagnetic, or microgravity conditions, and are capable of utilizing simple inorganic compounds such as sulfate and nitrate. Moreover, MTB likely emerged quite early in Earth's history, coinciding with a period when the Martian surface was covered with liquid water as well as a strong magnetic field. MTB are commonly discovered in suboxic or oxic-anoxic interfaces in aquatic environments or sediments similar to ancient crater lakes on Mars, such as Gale crater and Jezero crater. Taken together, MTB can be exemplary model microorganisms in astrobiology research, and putative ancient Martian life, if it ever occurred, could plausibly have included magnetotactic microorganisms. Furthermore, we summarize multiple typical biosignatures that can be applied for the detection of ancient MTB on Earth and extraterrestrial MTB-like life. We suggest transporting MTB to space stations and simulation chambers to further investigate their tolerance potential and distinctive biosignatures to aid in understanding the evolutionary history of MTB and the potential of magnetofossils as an extraterrestrial biomarker.
Collapse
Affiliation(s)
- Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
| | - Greig A Paterson
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Joseph L Kirschvink
- Division of Geological & Planetary Sciences, Calfiornia Institute of Technology, Pasadena, CA, 91125, USA
- Marine Core Research Institute, Kochi University, Kochi, 780-8520, Japan
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China.
| |
Collapse
|
3
|
Post-dispersal astrobiological events: modelling macroevolutionary dynamics for lithopanspermia. Extremophiles 2023; 27:3. [PMID: 36640217 DOI: 10.1007/s00792-023-01288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/24/2022] [Indexed: 01/15/2023]
Abstract
Lithopanspermia is defined as dispersal of living extremophiles from one planetary body to another, through life-bearing rocks ejected by meteor impacts. If lithopanspermia proves concrete, it should be viewed as an eco-evolutionary phenomenon. Biogeographic/microevolutionary models have been proposed as analogues for lithopanspermia dynamics; however, extremophile arrival on a planetary body is not the end of story. Here, we suggest that eco-evolutionary (environment + organismal microevolution) dynamics can lead to distinct macroevolutionary scenarios after extremophile arrival on a planetary body. Speciation would be the most important factor in interplanetary dynamics due to the possibly long time and distance between dispersive events, similar to long-distance dispersal dynamics on Earth. In previously uninhabited planets, persistence of extremophiles and descendants depends almost only on evolvability of extremophiles against abiotic filters. Considering a previously inhabited planet, ecological interactions at local or global scales could drive persistence (speciation/extinction) of extremophiles in the new habitat. Thus, we might expect high extinction rates if negative interactions are dominant, or, high speciation, if positive interactions occur, with extremophile lineages overpower (or not) the native biota. If interplanetary dispersal is possible, theories about the evolution of life may be universal, leading to a general eco-evolutionary model for life in the Universe.
Collapse
|
4
|
Adams FC, Napier KJ. Transfer of Rocks Between Planetary Systems: Panspermia Revisited. ASTROBIOLOGY 2022; 22:1429-1442. [PMID: 36475961 DOI: 10.1089/ast.2021.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Motivated by the recent discovery of interstellar objects passing through the solar system, and by recent developments in dynamical simulations, this article reconsiders the likelihood for life-bearing rocks to be transferred from one planetary system to another. The astronomical aspects of this lithopanspermia process can now be estimated, including the cross sections for rock capture, the velocity distributions of rocky ejecta, the survival times for captured objects, and the dynamics of the solar system in both its birth cluster and in the field. The remaining uncertainties are primarily biological, that is, the probability of life developing on a planet, the time required for such an event, and the efficiency with which life becomes seeded in a new environment. Using current estimates for the input quantities, we find that the transfer rates are enhanced in the birth cluster, but the resulting odds for success are too low for panspermia to be a likely occurrence. In contrast, the expected inventory of alien rocks in the solar system is predicted to be substantial (where the vast majority of such bodies are not biologically active and do not interact with the Earth).
Collapse
Affiliation(s)
- Fred C Adams
- Department of Physics and University of Michigan, Ann Arbor, Michigan, USA
- Department of Astronomy, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin J Napier
- Department of Physics and University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Carr CE. Resolving the History of Life on Earth by Seeking Life As We Know It on Mars. ASTROBIOLOGY 2022; 22:880-888. [PMID: 35467949 PMCID: PMC9298492 DOI: 10.1089/ast.2021.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An origin of Earth life on Mars would resolve significant inconsistencies between the inferred history of life and Earth's geologic history. Life as we know it utilizes amino acids, nucleic acids, and lipids for the metabolic, informational, and compartment-forming subsystems of a cell. Such building blocks may have formed simultaneously from cyanosulfidic chemical precursors in a planetary surface scenario involving ultraviolet light, wet-dry cycling, and volcanism. On the inferred water world of early Earth, such an origin would have been limited to volcanic island hotspots. A cyanosulfidic origin of life could have taken place on Mars via photoredox chemistry, facilitated by orders-of-magnitude more sub-aerial crust than early Earth, and an earlier transition to oxidative conditions that could have been involved in final fixation of the genetic code. Meteoritic bombardment may have generated transient habitable environments and ejected and transferred life to Earth. Ongoing and future missions to Mars offer an unprecedented opportunity to confirm or refute evidence consistent with a cyanosulfidic origin of life on Mars, search for evidence of ancient life, and constrain the evolution of Mars' oxidation state over time. We should seek to prove or refute a martian origin for life on Earth alongside other possibilities.
Collapse
Affiliation(s)
- Christopher E. Carr
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Address correspondence to: Christopher E. Carr, ESM Building, Room G10, 620 Cherry St NW, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying. Proc Natl Acad Sci U S A 2022; 119:e2116429119. [PMID: 35446612 PMCID: PMC9169909 DOI: 10.1073/pnas.2116429119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The replication of RNA without the aid of evolved enzymes may have enabled the inheritance of useful molecular functions during the origin of life. Template-directed RNA copying is a posited step in RNA replication. Key steps on the path to copying of RNA templates have been studied in isolation, including chemical nucleotide activation, generation of a key reactive intermediate, and template-directed polymerization. Here we report a prebiotically plausible scenario under which these reactions can happen together under mutually compatible conditions. Thus, this pathway could potentially have operated in nature without the complicating requirement for exchange of materials between distinct environments. Nonenzymatic template-directed RNA copying using chemically activated nucleotides is thought to have played a key role in the emergence of genetic information on the early Earth. A longstanding question concerns the number and nature of different environments that might have been necessary to enable all of the steps from nucleotide synthesis to RNA copying. Here we explore three sequential steps from this overall pathway: nucleotide activation, synthesis of imidazolium-bridged dinucleotides, and template-directed RNA copying. We find that all three steps can take place in one reaction mixture undergoing multiple freeze-thaw cycles. Recent experiments have demonstrated a potentially prebiotic methyl isocyanide-based nucleotide activation chemistry. However, the original version of this approach is incompatible with nonenzymatic RNA copying because the high required concentration of the imidazole activating group prevents the accumulation of the essential imidazolium-bridged dinucleotide. Here we report that ice eutectic phase conditions facilitate not only the methyl isocyanide-based activation of ribonucleotide 5′-monophosphates with stoichiometric 2-aminoimidazole, but also the subsequent conversion of these activated mononucleotides into imidazolium-bridged dinucleotides. Furthermore, this one-pot approach is compatible with template-directed RNA copying in the same reaction mixture. Our results suggest that the simple and common environmental fluctuation of freeze-thaw cycles could have played an important role in prebiotic nucleotide activation and nonenzymatic RNA copying.
Collapse
|
7
|
Fujiwara D, Kawaguchi Y, Kinoshita I, Yatabe J, Narumi I, Hashimoto H, Yokobori SI, Yamagishi A. Mutation Analysis of the rpoB Gene in the Radiation-Resistant Bacterium Deinococcus radiodurans R1 Exposed to Space during the Tanpopo Experiment at the International Space Station. ASTROBIOLOGY 2021; 21:1494-1504. [PMID: 34694920 DOI: 10.1089/ast.2020.2424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To investigate microbial viability and DNA damage, dried cell pellets of the radiation-resistant bacterium Deinococcus radiodurans were exposed to various space environmental conditions at the Exposure Facility of the International Space Station (ISS) as part of the Tanpopo mission. Mutation analysis was done by sequencing the rpoB gene encoding RNA polymerase β-subunit of the rifampicin-resistant mutants. Samples included bacteria exposed to the space environment with and without exposure to UV radiation as well as control samples held in the ISS cabin and at ground. The mutation sites of the rpoB gene obtained from the space-exposed and ISS/ground control samples were similar to the rpoB mutation sites previously reported in D. radiodurans. Most mutations were found at or near the rifampicin binding site in the RNA polymerase β-subunit. Mutation sites found in UV-exposed samples were mostly shared with non-exposed and ISS/ground control samples. These results suggest that most mutations found in our experiments were induced during procedures that were applied across all treatments: preparation, transfer from our laboratory to the ISS, return from the ISS, and storage before analysis. Some mutations may be enhanced by specific factors in the space experiments, but the mutations were also found in the spontaneous and control samples. Our experiment suggests that the dried cells of the microorganism D. radiodurans can travel without space-specific deterioration that may induce excess mutations relative to travel at Earth's surface. However, upon arrival at a recipient location, they must still be able to survive and repair the general damage induced during travel.
Collapse
Affiliation(s)
- Daisuke Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yuko Kawaguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Iori Kinoshita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Jun Yatabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Issay Narumi
- Faculty of Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| |
Collapse
|
8
|
Davila AF. Life on Mars: Independent Genesis or Common Ancestor? ASTROBIOLOGY 2021; 21:802-812. [PMID: 33848439 DOI: 10.1089/ast.2020.2397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The possibility of biological transfer between planetary bodies is seldom factored into life detection strategies, although the actuality of such an event would have profound implications for how we interpret potential biosignatures found on other worlds. This article addresses the possibility of life on Mars in the context of a biological transfer and an independent genesis of life. The phylogenetic tree of life on Earth is used as a blueprint to interpret evidence of life and as a guideline to determine the likelihood that potential biosignatures could be expressed by martian organisms. Several transfer scenarios are considered, depending on the timing of transfer with respect to the evolution of life on Earth. The implications of each transfer scenario and an independent genesis of life on the biochemical nature of the resulting martian organisms are discussed. The analysis highlights how conceding the possibility of a biological transfer has practical implications for how we search for evidence of life, both in terms of the quality of potential biosignatures and the likelihood that certain biosignatures might be expressed. It is concluded that a degree of uncertainty on the origin of martian organisms might be unavoidable, particularly in the absence of a biochemical context.
Collapse
Affiliation(s)
- Alfonso F Davila
- NASA Ames Research Center, Exobiology Branch, Moffett Field, California, USA
| |
Collapse
|
9
|
Slijepcevic P, Wickramasinghe C. Reconfiguring SETI in the microbial context: Panspermia as a solution to Fermi's paradox. Biosystems 2021; 206:104441. [PMID: 33965445 DOI: 10.1016/j.biosystems.2021.104441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022]
Abstract
All SETI (Search for Extraterrestrial Intelligence) programmes that were conceived and put into practice since the 1960s have been based on anthropocentric ideas concerning the definition of intelligence on a cosmic-wide scale. Brain-based neuronal intelligence, augmented by AI, are currently thought of as being the only form of intelligence that can engage in SETI-type interactions, and this assumption is likely to be connected with the dilemma of the famous Fermi paradox. We argue that high levels of intelligence and cognition inherent in ensembles of bacteria are much more likely to be the dominant form of cosmic intelligence, and the transfer of such intelligence is enabled by the processes of panspermia. We outline the main principles of bacterial intelligence, and how this intelligence may be used by the planetary-scale bacterial system, or the bacteriosphere, through processes of biological tropism, to connect to any extra-terrestrial microbial forms, independently of human interference.
Collapse
Affiliation(s)
- Predrag Slijepcevic
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, UK; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
10
|
Kawaguchi Y, Shibuya M, Kinoshita I, Yatabe J, Narumi I, Shibata H, Hayashi R, Fujiwara D, Murano Y, Hashimoto H, Imai E, Kodaira S, Uchihori Y, Nakagawa K, Mita H, Yokobori SI, Yamagishi A. DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space. Front Microbiol 2020; 11:2050. [PMID: 32983036 PMCID: PMC7479814 DOI: 10.3389/fmicb.2020.02050] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
The hypothesis called “panspermia” proposes an interplanetary transfer of life. Experiments have exposed extremophilic organisms to outer space to test microbe survivability and the panspermia hypothesis. Microbes inside shielding material with sufficient thickness to protect them from UV-irradiation can survive in space. This process has been called “lithopanspermia,” meaning rocky panspermia. We previously proposed sub-millimeter cell pellets (aggregates) could survive in the harsh space environment based on an on-ground laboratory experiment. To test our hypothesis, we placed dried cell pellets of the radioresistant bacteria Deinococcus spp. in aluminum plate wells in exposure panels attached to the outside of the International Space Station (ISS). We exposed microbial cell pellets with different thickness to space environments. The results indicated the importance of the aggregated form of cells for surviving in harsh space environment. We also analyzed the samples exposed to space from 1 to 3 years. The experimental design enabled us to get and extrapolate the survival time course to predict the survival time of Deinococcus radiodurans. Dried deinococcal cell pellets of 500 μm thickness were alive after 3 years of space exposure and repaired DNA damage at cultivation. Thus, cell pellets 1 mm in diameter have sufficient protection from UV and are estimated to endure the space environment for 2–8 years, extrapolating the survival curve and considering the illumination efficiency of the space experiment. Comparison of the survival of different DNA repair-deficient mutants suggested that cell aggregates exposed in space for 3 years suffered DNA damage, which is most efficiently repaired by the uvrA gene and uvdE gene products, which are responsible for nucleotide excision repair and UV-damage excision repair. Collectively, these results support the possibility of microbial cell aggregates (pellets) as an ark for interplanetary transfer of microbes within several years.
Collapse
Affiliation(s)
- Yuko Kawaguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Mio Shibuya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Iori Kinoshita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Jun Yatabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Issay Narumi
- Faculty of Life Sciences, Toyo University, Oura-gun, Japan
| | - Hiromi Shibata
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Risako Hayashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Daisuke Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yuka Murano
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Japan
| | - Eiichi Imai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Satoshi Kodaira
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yukio Uchihori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazumichi Nakagawa
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Hajime Mita
- Department of Life, Environment and Applied Chemistry, Faculty of Engineering, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Akihiko Yamagishi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan.,Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Japan
| |
Collapse
|
11
|
Castillo-Rogez JC, Neveu M, Scully JEC, House CH, Quick LC, Bouquet A, Miller K, Bland M, De Sanctis MC, Ermakov A, Hendrix AR, Prettyman TH, Raymond CA, Russell CT, Sherwood BE, Young E. Ceres: Astrobiological Target and Possible Ocean World. ASTROBIOLOGY 2020; 20:269-291. [PMID: 31904989 DOI: 10.1089/ast.2018.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ceres, the most water-rich body in the inner solar system after Earth, has recently been recognized to have astrobiological importance. Chemical and physical measurements obtained by the Dawn mission enabled the quantification of key parameters, which helped to constrain the habitability of the inner solar system's only dwarf planet. The surface chemistry and internal structure of Ceres testify to a protracted history of reactions between liquid water, rock, and likely organic compounds. We review the clues on chemical composition, temperature, and prospects for long-term occurrence of liquid and chemical gradients. Comparisons with giant planet satellites indicate similarities both from a chemical evolution standpoint and in the physical mechanisms driving Ceres' internal evolution.
Collapse
Affiliation(s)
| | - Marc Neveu
- Sciences and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, Maryland
- University of Maryland College Park, Greenbelt, Maryland
| | - Jennifer E C Scully
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Christopher H House
- Department of Geosciences,Penn State Astrobiology Research Center, The Pennsylvania State University, University Park, Pennsylvania
| | - Lynnae C Quick
- Sciences and Exploration Directorate, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Alexis Bouquet
- LAM (Laboratoire d'Astrophysique de Marseille), Aix Marseille Université, CNRS, UMR 7326, Marseille, France
| | - Kelly Miller
- Southwest Research Institute, San Antonio, Texas
| | | | | | - Anton Ermakov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - Carol A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Christopher T Russell
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California
| | | | - Edward Young
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California
| |
Collapse
|
12
|
Huwe B, Fiedler A, Moritz S, Rabbow E, de Vera JP, Joshi J. Mosses in Low Earth Orbit: Implications for the Limits of Life and the Habitability of Mars. ASTROBIOLOGY 2019; 19:221-232. [PMID: 30742499 DOI: 10.1089/ast.2018.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a part of the European Space Agency mission "EXPOSE-R2" on the International Space Station (ISS), the BIOMEX (Biology and Mars Experiment) experiment investigates the habitability of Mars and the limits of life. In preparation for the mission, experimental verification tests and scientific verification tests simulating different combinations of abiotic space- and Mars-like conditions were performed to analyze the resistance of a range of model organisms. The simulated abiotic space- and Mars-stressors were extreme temperatures, vacuum, and Mars-like surface ultraviolet (UV) irradiation in different atmospheres. We present for the first time simulated space exposure data of mosses using plantlets of the bryophyte genus Grimmia, which is adapted to high altitudinal extreme abiotic conditions at the Swiss Alps. Our preflight tests showed that severe UVR200-400nm irradiation with the maximal dose of 5 and 6.8 × 105 kJ·m-2, respectively, was the only stressor with a negative impact on the vitality with a 37% (terrestrial atmosphere) or 36% reduction (space- and Mars-like atmospheres) in photosynthetic activity. With every exposure to UVR200-400nm 105 kJ·m-2, the vitality of the bryophytes dropped by 6%. No effect was found, however, by any other stressor. As the mosses were still vital after doses of ultraviolet radiation (UVR) expected during the EXPOSE-R2 mission on ISS, we show that this earliest extant lineage of land plants is highly resistant to extreme abiotic conditions.
Collapse
Affiliation(s)
- Björn Huwe
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Annelie Fiedler
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Sophie Moritz
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Elke Rabbow
- 2 Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jean Pierre de Vera
- 3 Astrobiological Laboratories, Management and Infrastructure, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Jasmin Joshi
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
- 4 Institute for Landscape and Open Space, Hochschule für Technik HSR Rapperswil, Rapperswil, Switzerland
| |
Collapse
|
13
|
Veras D, Armstrong DJ, Blake JA, Gutiérrez-Marcos JF, Jackson AP, Schäefer H. Dynamical and Biological Panspermia Constraints Within Multi-planet Exosystems. ASTROBIOLOGY 2018; 18:1106-1122. [PMID: 30095987 DOI: 10.1089/ast.2017.1786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As discoveries of multiple planets in the habitable zone of their parent star mount, developing analytical techniques to quantify extrasolar intra-system panspermia will become increasingly important. Here, we provide user-friendly prescriptions that describe the asteroid impact characteristics which would be necessary to transport life both inwards and outwards within these systems within a single framework. Our focus is on projectile generation and delivery and our expressions are algebraic, eliminating the need for the solution of differential equations. We derive a probability distribution function for life-bearing debris to reach a planetary orbit, and describe the survival of micro-organisms during planetary ejection, their journey through interplanetary space, and atmospheric entry.
Collapse
Affiliation(s)
- Dimitri Veras
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 2 Department of Physics, University of Warwick , Coventry, United Kingdom
| | - David J Armstrong
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 2 Department of Physics, University of Warwick , Coventry, United Kingdom
| | - James A Blake
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 2 Department of Physics, University of Warwick , Coventry, United Kingdom
| | - Jose F Gutiérrez-Marcos
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 3 School of Life Sciences, University of Warwick , Coventry, United Kingdom
| | - Alan P Jackson
- 4 Centre for Planetary Sciences, University of Toronto at Scarborough , Toronto, Canada
- 5 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| | - Hendrik Schäefer
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 3 School of Life Sciences, University of Warwick , Coventry, United Kingdom
| |
Collapse
|
14
|
|
15
|
Uckert K, Chanover NJ, Getty S, Voelz DG, Brinckerhoff WB, McMillan N, Xiao X, Boston PJ, Li X, McAdam A, Glenar DA, Chavez A. The Characterization of Biosignatures in Caves Using an Instrument Suite. ASTROBIOLOGY 2017; 17:1203-1218. [PMID: 29227156 DOI: 10.1089/ast.2016.1568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.
Collapse
Affiliation(s)
- Kyle Uckert
- 1 Department of Astronomy, New Mexico State University , Las Cruces, New Mexico
| | - Nancy J Chanover
- 1 Department of Astronomy, New Mexico State University , Las Cruces, New Mexico
| | | | - David G Voelz
- 3 Department of Electrical and Computer Engineering, New Mexico State University , Las Cruces, New Mexico
| | | | - Nancy McMillan
- 4 Department of Geological Sciences, New Mexico State University , Las Cruces, New Mexico
| | - Xifeng Xiao
- 3 Department of Electrical and Computer Engineering, New Mexico State University , Las Cruces, New Mexico
| | - Penelope J Boston
- 5 NASA Astrobiology Institute , NASA Ames Research Center, Moffett Field, California
| | - Xiang Li
- 6 University of Maryland , Baltimore County, Baltimore, Maryland
| | - Amy McAdam
- 2 NASA/Goddard Space Flight Center , Greenbelt, Maryland
| | - David A Glenar
- 6 University of Maryland , Baltimore County, Baltimore, Maryland
| | - Arriana Chavez
- 4 Department of Geological Sciences, New Mexico State University , Las Cruces, New Mexico
| |
Collapse
|
16
|
Blanco Y, Gallardo-Carreño I, Ruiz-Bermejo M, Puente-Sánchez F, Cavalcante-Silva E, Quesada A, Prieto-Ballesteros O, Parro V. Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummified Microbial Mat from Antarctica as a Best-Case Scenario. ASTROBIOLOGY 2017; 17:984-996. [PMID: 29016195 PMCID: PMC5655591 DOI: 10.1089/ast.2016.1467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/20/2017] [Indexed: 05/17/2023]
Abstract
The search for biomarkers of present or past life is one of the major challenges for in situ planetary exploration. Multiple constraints limit the performance and sensitivity of remote in situ instrumentation. In addition, the structure, chemical, and mineralogical composition of the sample may complicate the analysis and interpretation of the results. The aim of this work is to highlight the main constraints, performance, and complementarity of several techniques that have already been implemented or are planned to be implemented on Mars for detection of organic and molecular biomarkers on a best-case sample scenario. We analyzed a 1000-year-old desiccated and mummified microbial mat from Antarctica by Raman and IR (infrared) spectroscopies (near- and mid-IR), thermogravimetry (TG), differential thermal analysis, mass spectrometry (MS), and immunological detection with a life detector chip. In spite of the high organic content (ca. 20% wt/wt) of the sample, the Raman spectra only showed the characteristic spectral peaks of the remaining beta-carotene biomarker and faint peaks of phyllosilicates over a strong fluorescence background. IR spectra complemented the mineralogical information from Raman spectra and showed the main molecular vibrations of the humic acid functional groups. The TG-MS system showed the release of several volatile compounds attributed to biopolymers. An antibody microarray for detecting cyanobacteria (CYANOCHIP) detected biomarkers from Chroococcales, Nostocales, and Oscillatoriales orders. The results highlight limitations of each technique and suggest the necessity of complementary approaches in the search for biomarkers because some analytical techniques might be impaired by sample composition, presentation, or processing. Key Words: Planetary exploration-Life detection-Microbial mat-Life detector chip-Thermogravimetry-Raman spectroscopy-NIR-DRIFTS. Astrobiology 17, 984-996.
Collapse
Affiliation(s)
- Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - Marta Ruiz-Bermejo
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - Antonio Quesada
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| |
Collapse
|
17
|
Erdmann W, Idzikowski B, Kowalski W, Szymański B, Kosicki JZ, Kaczmarek Ł. Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field? PLoS One 2017; 12:e0183380. [PMID: 28886031 PMCID: PMC5590818 DOI: 10.1371/journal.pone.0183380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/03/2017] [Indexed: 12/31/2022] Open
Abstract
Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth’s organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada), which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field.
Collapse
Affiliation(s)
- Weronika Erdmann
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, Poznań, Poland
| | - Bogdan Idzikowski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego17, Poznań, Poland
| | - Wojciech Kowalski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego17, Poznań, Poland
| | - Bogdan Szymański
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego17, Poznań, Poland
| | - Jakub Z. Kosicki
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, Poznań, Poland
- * E-mail:
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, Poznań, Poland
| |
Collapse
|
18
|
Cataldi G, Brandeker A, Thébault P, Singer K, Ahmed E, de Vries BL, Neubeck A, Olofsson G. Searching for Biosignatures in Exoplanetary Impact Ejecta. ASTROBIOLOGY 2017; 17:721-746. [PMID: 28692303 DOI: 10.1089/ast.2015.1437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future. Key Words: Biosignatures-Exoplanets-Impacts-Interplanetary dust-Remote sensing. Astrobiology 17, 721-746.
Collapse
Affiliation(s)
- Gianni Cataldi
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
| | - Alexis Brandeker
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
| | - Philippe Thébault
- 3 LESIA-Observatoire de Paris, UPMC Univ. Paris 06, Univ. Paris-Diderot , Paris, France
| | - Kelsi Singer
- 4 Southwest Research Institute , Boulder, Colorado, USA
| | - Engy Ahmed
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
- 5 Royal Institute of Technology (KTH) , Science for Life Laboratory, Solna, Sweden
- 6 Stockholm University , Department of Geological Sciences, Stockholm, Sweden
| | - Bernard L de Vries
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
- 7 Scientific Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC) , Noordwijk, The Netherlands
| | - Anna Neubeck
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
- 6 Stockholm University , Department of Geological Sciences, Stockholm, Sweden
| | - Göran Olofsson
- 1 AlbaNova University Centre, Stockholm University , Department of Astronomy, Stockholm, Sweden
- 2 Stockholm University Astrobiology Centre , Stockholm, Sweden
| |
Collapse
|
19
|
Garcia-Lopez E, Cid C. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds. Front Microbiol 2017; 8:1407. [PMID: 28804477 PMCID: PMC5532398 DOI: 10.3389/fmicb.2017.01407] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i) which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii) what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii) What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv) taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active.
Collapse
Affiliation(s)
| | - Cristina Cid
- Microbial Evolution Laboratory, Centro de Astrobiología (Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| |
Collapse
|
20
|
Abstract
We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.
Collapse
|
21
|
Vasanthan T, Alejaldre L, Hider J, Patel S, Husain N, Umapathisivam B, Stone J. G-Equivalent Acceleration Tolerance in the Eutardigrade Species Hypsibius dujardini. ASTROBIOLOGY 2017; 17:55-60. [PMID: 28051326 DOI: 10.1089/ast.2015.1439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tardigrades are microscopic organisms renowned for their ability to survive extreme environmental conditions. Tardigrade extreme-tolerance research has centered on the ability to withstand desiccation, low and high temperatures, and high hydrostatic pressure and radiation levels. Tardigrade tolerance to hypergravity, however, has yet to be described. We used the eutardigrade species Hypsibius dujardini to investigate short-term tolerance to g-equivalent accelerations (i.e., mimicking g-forces). Data obtained from specimens centrifuged between 3421g and 16,060g for 1 min inclusively reveal tolerance in an acceleration-dependent relation, with lower survivorship and egg production at higher accelerations. This is the first study to demonstrate tardigrade potential for tolerance to hypergravity and describe expected effects on tardigrade survival and reproduction. These findings will prove to be useful in lithopanspermia research (i.e., viable spread in meteoritic rocks). Key Words: Astrobiology-Extreme tolerance-Hypergravity-Tardigrade. Astrobiology 17, 55-60.
Collapse
Affiliation(s)
- Tarushika Vasanthan
- 1 Department of Biology, McMaster University , Hamilton, Canada
- 2 Origins Institute, McMaster University , Hamilton, Canada
| | - Lorea Alejaldre
- 1 Department of Biology, McMaster University , Hamilton, Canada
| | - Jessica Hider
- 1 Department of Biology, McMaster University , Hamilton, Canada
| | - Shreya Patel
- 1 Department of Biology, McMaster University , Hamilton, Canada
| | - Nabiha Husain
- 1 Department of Biology, McMaster University , Hamilton, Canada
| | | | - Jonathon Stone
- 1 Department of Biology, McMaster University , Hamilton, Canada
- 2 Origins Institute, McMaster University , Hamilton, Canada
| |
Collapse
|
22
|
Cabrol NA. Alien Mindscapes-A Perspective on the Search for Extraterrestrial Intelligence. ASTROBIOLOGY 2016; 16:661-76. [PMID: 27383691 PMCID: PMC5111820 DOI: 10.1089/ast.2016.1536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/23/2016] [Indexed: 05/15/2023]
Abstract
UNLABELLED Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI (1) ), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers. KEY WORDS SETI-Astrobiology-Coevolution of Earth and life-Planetary habitability and biosignatures. Astrobiology 16, 661-676.
Collapse
|
23
|
Kawaguchi Y, Yokobori SI, Hashimoto H, Yano H, Tabata M, Kawai H, Yamagishi A. Investigation of the Interplanetary Transfer of Microbes in the Tanpopo Mission at the Exposed Facility of the International Space Station. ASTROBIOLOGY 2016; 16:363-76. [PMID: 27176813 DOI: 10.1089/ast.2015.1415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
UNLABELLED The Tanpopo mission will address fundamental questions on the origin of terrestrial life. The main goal is to test the panspermia hypothesis. Panspermia is a long-standing hypothesis suggesting the interplanetary transport of microbes. Another goal is to test the possible origin of organic compounds carried from space by micrometeorites before the terrestrial origin of life. To investigate the panspermia hypothesis and the possible space origin of organic compounds, we performed space experiments at the Exposed Facility (EF) of the Japanese Experiment Module (JEM) of the International Space Station (ISS). The mission was named Tanpopo, which in Japanese means dandelion. We capture any orbiting microparticles, such as micrometeorites, space debris, and terrestrial particles carrying microbes as bioaerosols, by using blocks of silica aerogel. We also test the survival of microbial species and organic compounds in the space environment for up to 3 years. The goal of this review is to introduce an overview of the Tanpopo mission with particular emphasis on the investigation of the interplanetary transfer of microbes. The Exposed Experiment Handrail Attachment Mechanism with aluminum Capture Panels (CPs) and Exposure Panels (EPs) was exposed on the EF-JEM on May 26, 2015. The first CPs and EPs will be returned to the ground in mid-2016. Possible escape of terrestrial microbes from Earth to space will be evaluated by investigating the upper limit of terrestrial microbes by the capture experiment. Possible mechanisms for transfer of microbes over the stratosphere and an investigation of the effect of the microbial cell-aggregate size on survivability in space will also be discussed. KEY WORDS Panspermia-Astrobiology-Low-Earth orbit. Astrobiology 16, 363-376.
Collapse
Affiliation(s)
- Yuko Kawaguchi
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| | - Shin-Ichi Yokobori
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| | - Hirofumi Hashimoto
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
| | - Hajime Yano
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
| | - Makoto Tabata
- 3 Graduate School of Science, Chiba University , Chiba-shi, Japan
| | - Hideyuki Kawai
- 3 Graduate School of Science, Chiba University , Chiba-shi, Japan
| | - Akihiko Yamagishi
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| |
Collapse
|
24
|
Rezzonico F. Nanopore-based instruments as biosensors for future planetary missions. ASTROBIOLOGY 2014; 14:344-351. [PMID: 24684166 DOI: 10.1089/ast.2013.1120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Data from automated orbiters and landers have dashed humankind's hopes of finding complex life-forms elsewhere in the Solar System. The focus of exobiological research was thus forced to shift from the detection of life through simple visual imaging to complex biochemical experiments aimed at the detection of microbial activity. Searching for biosignatures over interplanetary distances is a formidable task and poses the dilemma of what are the proper experiments that can be performed on-site to maximize the chances of success if extraterrestrial life is present but not evident. Despite their astonishing morphological diversity, all known organisms on Earth share the same basic molecular architecture; thus the vast majority of our detection and identification techniques are b(i)ased on Terran biochemistry. There is, however, a distinct possibility that life may have emerged elsewhere by using other molecular building blocks, a fact that is likely to make the outcome of most of the current molecular biological and biochemical life-detection protocols difficult to interpret if not completely ineffective. Nanopore-based sensing devices allow the analysis of single molecules, including the sequence of informational biopolymers such as DNA or RNA, by measuring current changes across an electrically resistant membrane when the analyte flows through an embedded transmembrane protein or a solid-state nanopore. Under certain basic assumptions about their physical properties, this technology has the potential to discriminate and possibly analyze biopolymers, in particular genetic information carriers, without prior detailed knowledge of their fundamental chemistry and is sufficiently portable to be used for automated analysis in planetary exploration, all of which makes it the ideal candidate for the search for life signatures in remote watery environments such as Mars, Europa, or Enceladus.
Collapse
Affiliation(s)
- Fabio Rezzonico
- Research group Environmental Genomics and Systems Biology, Zurich University for Applied Sciences (ZHAW) , Wädenswil, Switzerland
| |
Collapse
|
25
|
McKay CP, Anbar AD, Porco C, Tsou P. Follow the plume: the habitability of Enceladus. ASTROBIOLOGY 2014; 14:352-355. [PMID: 24684187 DOI: 10.1089/ast.2014.1158] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.
Collapse
|