1
|
Di Nezio F, Ong ILH, Riedel R, Goshal A, Dhar J, Roman S, Storelli N, Sengupta A. Synergistic phenotypic adaptations of motile purple sulphur bacteria Chromatium okenii during lake-to-laboratory domestication. PLoS One 2024; 19:e0310265. [PMID: 39436933 PMCID: PMC11495639 DOI: 10.1371/journal.pone.0310265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 10/25/2024] Open
Abstract
Isolating microorganisms from natural environments for cultivation under optimized laboratory settings has markedly improved our understanding of microbial ecology. Artificial growth conditions often diverge from those in natural ecosystems, forcing wild isolates into distinct selective pressures, resulting in diverse eco-physiological adaptations mediated by modification of key phenotypic traits. For motile microorganisms we still lack a biophysical understanding of the relevant traits emerging during domestication and their mechanistic interplay driving short-to-long-term microbial adaptation under laboratory conditions. Using microfluidics, atomic force microscopy, quantitative imaging, and mathematical modeling, we study phenotypic adaptation of Chromatium okenii, a motile phototrophic purple sulfur bacterium from meromictic Lake Cadagno, grown under laboratory conditions over multiple generations. Our results indicate that naturally planktonic C. okenii leverage shifts in cell-surface adhesive interactions, synergistically with changes in cell morphology, mass density, and distribution of intracellular sulfur globules, to suppress their swimming traits, ultimately switching to a sessile lifeform. A computational model of cell mechanics confirms the role of such phenotypic shifts in suppressing the planktonic lifeform. By investigating key phenotypic traits across different physiological stages of lab-grown C. okenii, we uncover a progressive loss of motility during the early stages of domestication, followed by concomitant deflagellation and enhanced surface attachment, ultimately driving the transition of motile sulfur bacteria to a sessile state. Our results establish a mechanistic link between suppression of motility and surface attachment via phenotypic changes, underscoring the emergence of adaptive fitness under laboratory conditions at the expense of traits tailored for natural environments.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Microbiology Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Irvine Lian Hao Ong
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - René Riedel
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Arkajyoti Goshal
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Jayabrata Dhar
- Department of Mechanical Engineering, National Institute of Technology, Durgapur, India
| | - Samuele Roman
- Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Nicola Storelli
- Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Microbiology Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
- Institute for Advanced Studies, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Di Nezio F, Roman S, Buetti-Dinh A, Sepúlveda Steiner O, Bouffard D, Sengupta A, Storelli N. Motile bacteria leverage bioconvection for eco-physiological benefits in a natural aquatic environment. Front Microbiol 2023; 14:1253009. [PMID: 38163082 PMCID: PMC10756677 DOI: 10.3389/fmicb.2023.1253009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Bioconvection, a phenomenon characterized by the collective upward swimming of motile microorganisms, has mainly been investigated within controlled laboratory settings, leaving a knowledge gap regarding its ecological implications in natural aquatic environments. This study aims to address this question by investigating the influence of bioconvection on the eco-physiology of the anoxygenic phototrophic sulfur bacteria community of meromictic Lake Cadagno. Methods Here we comprehensively explore its effects by comparing the physicochemical profiles of the water column and the physiological traits of the main populations of the bacterial layer (BL). The search for eco-physiological effects of bioconvection involved a comparative analysis between two time points during the warm season, one featuring bioconvection (July) and the other without it (September). Results A prominent distinction in the physicochemical profiles of the water column centers on light availability, which is significantly higher in July. This minimum threshold of light intensity is essential for sustaining the physiological CO2 fixation activity of Chromatium okenii, the microorganism responsible for bioconvection. Furthermore, the turbulence generated by bioconvection redistributes sulfides to the upper region of the BL and displaces other microorganisms from their optimal ecological niches. Conclusion The findings underscore the influence of bioconvection on the physiology of C. okenii and demonstrate its functional role in improving its metabolic advantage over coexisting phototrophic sulfur bacteria. However, additional research is necessary to confirm these results and to unravel the multiscale processes activated by C. okenii's motility mechanisms.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Samuele Roman
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
| | - Oscar Sepúlveda Steiner
- Department of Surface Waters – Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
- Civil and Environmental Engineering, University of California, Davis, Davis, CA, United States
| | - Damien Bouffard
- Department of Surface Waters – Research and Management, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Kastanienbaum, Switzerland
- Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Anupam Sengupta
- Department of Physics and Materials Science, Physics of Living Matter Group, Luxembourg City, Luxembourg
| | - Nicola Storelli
- Department of Environment, Constructions, and Design, Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Häder DP, Hemmersbach R. Euglena, a Gravitactic Flagellate of Multiple Usages. Life (Basel) 2022; 12:1522. [PMID: 36294957 PMCID: PMC9605500 DOI: 10.3390/life12101522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Human exploration of space and other celestial bodies bears a multitude of challenges. The Earth-bound supply of material and food is restricted, and in situ resource utilisation (ISRU) is a prerequisite. Excellent candidates for delivering several services are unicellular algae, such as the space-approved flagellate Euglena gracilis. This review summarizes the main characteristics of this unicellular organism. Euglena has been exposed on various platforms that alter the impact of gravity to analyse its corresponding gravity-dependent physiological and molecular genetic responses. The sensory transduction chain of gravitaxis in E. gracilis has been identified. The molecular gravi-(mechano-)receptors are mechanosensory calcium channels (TRP channels). The inward gated calcium binds specifically to one of several calmodulins (CaM.2), which, in turn, activates an adenylyl cyclase. This enzyme uses ATP to produce cAMP, which induces protein kinase A, followed by the phosphorylation of a motor protein in the flagellum, initiating a course correction, and, finally, resulting in gravitaxis. During long space missions, a considerable amount of food, oxygen, and water has to be carried, and the exhaled carbon dioxide has to be removed. In this context, E. gracilis is an excellent candidate for biological life support systems, since it produces oxygen by photosynthesis, takes up carbon dioxide, and is even edible. Various species and mutants of Euglena are utilized as a producer of commercial food items, as well as a source of medicines, as it produces a number of vitamins, contains numerous trace elements, and synthesizes dietary proteins, lipids, and the reserve molecule paramylon. Euglena has anti-inflammatory, -oxidant, and -obesity properties.
Collapse
Affiliation(s)
- Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Erlangen, Germany
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
4
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
5
|
Kim S, Lim D, Lee D, Yu J, Lee T. Valorization of corn steep liquor for efficient paramylon production using Euglena gracilis: The impact of precultivation and light-dark cycle. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Sun L, Sun S, Bai M, Wang Z, Zhao Y, Huang Q, Hu C, Li X. Internalization of polystyrene microplastics in Euglena gracilis and its effects on the protozoan photosynthesis and motility. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105840. [PMID: 33945909 DOI: 10.1016/j.aquatox.2021.105840] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
In this study, effects of polystyrene microplastics (MPS) on Euglena gracilis were investigated via examination on its photosynthesis and motility, two typical properties of the protozoan. No adverse effects were observed after 4-d exposure except for decrease in motility at two high MPS concentrations (5 and 25 mg/L). After 8-d duration, MPS at 1 mg/L had no obvious effects on E. gracilis, but two higher concentrations (5 and 25 mg/L) of MPS inhibited protozoan growth, motility, and photosynthesis. The reduced protozoan photosynthetic activity was reflected by changes in Fv/Fm (the maximum photochemical yield of PSII), ΔFIP (difference between FP and FI) and PIABS (the performance index), indicative of reduced quantum yield of electron transport and enhanced energy dissipation. A dose-dependent effect of MPS on E. gracilis was found in protozoan growth, photosynthesis and motility, especially photosynthetic indices. MPS of small size (75 nm) seemed more toxic to the protozoa than large size (1000 nm). Internalization of MPS in the cells and chloroplasts was observed clearly for the first time, likely responsible for their toxicity. Analysis on photosynthetic process and motility of E. gracilis could provide more comprehensive understanding of MPS toxicity in the aquatic environment, and may potentially serve as a biomonitoring tool.
Collapse
Affiliation(s)
- Li Sun
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| | - Shiqing Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| | - Ming Bai
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| | - Zhengjun Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, Georgia 30223, United States
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China.
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P.R. China
| |
Collapse
|
7
|
Häder DP, Hemmersbach R. Gravitaxis in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:237-266. [DOI: 10.1007/978-3-319-54910-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|