1
|
O'Brien ÁC, Hallis LJ, Regnault C, Morrison D, Blackburn G, Steele A, Daly L, Tait A, Tremblay MM, Telenko DE, Gunn J, McKay E, Mari N, Salik MA, Ascough P, Toney J, Griffin S, Whitfield P, Lee M. Using Organic Contaminants to Constrain the Terrestrial Journey of the Martian Meteorite Lafayette. ASTROBIOLOGY 2022; 22:1351-1362. [PMID: 36264546 PMCID: PMC9618387 DOI: 10.1089/ast.2021.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
A key part of the search for extraterrestrial life is the detection of organic molecules since these molecules form the basis of all living things on Earth. Instrument suites such as SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) onboard the NASA Perseverance rover and the Mars Organic Molecule Analyzer onboard the future ExoMars Rosalind Franklin rover are designed to detect organic molecules at the martian surface. However, size, mass, and power limitations mean that these instrument suites cannot yet match the instrumental capabilities available in Earth-based laboratories. Until Mars Sample Return, the only martian samples available for study on Earth are martian meteorites. This is a collection of largely basaltic igneous rocks that have been exposed to varying degrees of terrestrial contamination. The low organic molecule abundance within igneous rocks and the expectation of terrestrial contamination make the identification of martian organics within these meteorites highly challenging. The Lafayette martian meteorite exhibits little evidence of terrestrial weathering, potentially making it a good candidate for the detection of martian organics despite uncertainties surrounding its fall history. In this study, we used ultrapure solvents to extract organic matter from triplicate samples of Lafayette and analyzed these extracts via hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS). Two hundred twenty-four metabolites (organic molecules) were detected in Lafayette at concentrations more than twice those present in the procedural blanks. In addition, a large number of plant-derived metabolites were putatively identified, the presence of which supports the unconfirmed report that Lafayette fell in a semirural location in Indiana. Remarkably, the putative identification of the mycotoxin deoxynivalenol (or vomitoxin), alongside the report that the collector was possibly a student at Purdue University, can be used to identify the most likely fall year as 1919.
Collapse
Affiliation(s)
- Áine Clare O'Brien
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
- SUERC, University of Glasgow, East Kilbride, UK
| | - Lydia Jane Hallis
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Clement Regnault
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | | | - Gavin Blackburn
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | - Andrew Steele
- Carnegie Planets, Carnegie Science, Washington DC, USA
| | - Luke Daly
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, Australia
- Department of Materials, University of Oxford, Oxford, UK
| | - Alastair Tait
- School of Earth, Atmosphere & Environment Monash University, Rainforest Walk Clayton, Victoria, Australia
| | - Marissa Marie Tremblay
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Darcy E.P. Telenko
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Jacqueline Gunn
- School of Professional Services, Glasgow Caledonian University, Cowcaddens Road, Glasgow, UK
| | | | - Nicola Mari
- Dipartimento di Scienze della Terra e dell'Ambiente, University of Pavia, Pavia, Italy
| | - Mohammad Ali Salik
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | | | - Jaime Toney
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Sammy Griffin
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Phil Whitfield
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | - Martin Lee
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| |
Collapse
|
2
|
Siljeström S, Li X, Brinckerhoff W, van Amerom F, Cady SL. ExoMars Mars Organic Molecule Analyzer (MOMA) Laser Desorption/Ionization Mass Spectrometry (LDI-MS) Analysis of Phototrophic Communities from a Silica-Depositing Hot Spring in Yellowstone National Park, USA. ASTROBIOLOGY 2021; 21:1515-1525. [PMID: 33733826 DOI: 10.1089/ast.2020.2368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Mars Organic Molecule Analyzer (MOMA) is a key scientific instrument on the ExoMars Rover mission. MOMA is designed to detect and characterize organic compounds, over a wide range of volatility and molecular weight, in samples obtained from up to 2 m below the martian surface. Thorough analog sample studies are required to best prepare to interpret MOMA data collected on Mars. We present here the MOMA characterization of Mars analog samples, microbial streamer communities composed primarily of oxygenic and anoxygenic phototrophs, collected from an alkaline silica-depositing hot spring in Yellowstone National Park, Wyoming, USA. Samples of partly mineralized microbial streamers and their total lipid extract (TLE) were measured on a MOMA Engineering Test Unit (ETU) instrument by using its laser desorption/ionization mass spectrometry (LDI-MS) mode. MOMA LDI-MS detected a variety of lipids and pigments such as chlorophyll a, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, diacylglycerols, and β-carotene in the TLE sample. Only chlorophyll a was detected in the untreated streamer samples when using mass isolation, which was likely due to the higher background signal of this sample and the relative high ionization potential of the chlorophyll a compared with other compounds in unextracted samples. The results add to the LDI-MS sample characterization database and demonstrate the benefit of using mass isolation on the MOMA instrument to reveal the presence of complex organics and potential biomarkers preserved in a natural sample. This will also provide guidance to in situ analysis of surface samples during Mars operations.
Collapse
Affiliation(s)
- Sandra Siljeström
- RISE Research Institutes of Sweden, Department of Chemistry, Biomaterials and Textiles, Stockholm, Sweden
| | - Xiang Li
- Center for Research and Exploration in Space Science & Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | | | | - Sherry L Cady
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
3
|
Azua-Bustos A, Fairén AG, Silva CG, Carrizo D, Fernández-Martínez MÁ, Arenas-Fajardo C, Fernández-Sampedro M, Gil-Lozano C, Sánchez-García L, Ascaso C, Wierzchos J, Rampe EB. Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Sci Rep 2020; 10:19183. [PMID: 33154541 PMCID: PMC7645800 DOI: 10.1038/s41598-020-76302-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023] Open
Abstract
The modern Martian surface is unlikely to be habitable due to its extreme aridity among other environmental factors. This is the reason why the hyperarid core of the Atacama Desert has been studied as an analog for the habitability of Mars for more than 50 years. Here we report a layer enriched in smectites located just 30 cm below the surface of the hyperarid core of the Atacama. We discovered the clay-rich layer to be wet (a phenomenon never observed before in this region), keeping a high and constant relative humidity of 78% (aw 0.780), and completely isolated from the changing and extremely dry subaerial conditions characteristic of the Atacama. The smectite-rich layer is inhabited by at least 30 halophilic species of metabolically active bacteria and archaea, unveiling a previously unreported habitat for microbial life under the surface of the driest place on Earth. The discovery of a diverse microbial community in smectite-rich subsurface layers in the hyperarid core of the Atacama, and the collection of biosignatures we have identified within the clays, suggest that similar shallow clay deposits on Mars may contain biosignatures easily reachable by current rovers and landers.
Collapse
Affiliation(s)
- Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain.
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| | - Alberto G Fairén
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain.
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA.
| | | | - Daniel Carrizo
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
| | | | | | | | - Carolina Gil-Lozano
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
- Laboratory of Planetology and Geodynamics, Université de Nantes, 44322, Nantes, France
| | | | - Carmen Ascaso
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Jacek Wierzchos
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Elizabeth B Rampe
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
4
|
Járvás G, Guttman A. Commentary regarding "Decision support algorithm for the selection of analytical methods in organic compounds detection for future extraterrestrial exploratory missions". Electrophoresis 2019; 40:2662-2663. [PMID: 31179558 DOI: 10.1002/elps.201900184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 11/08/2022]
Abstract
Mátyás et al. recently published their paper entitled as "Decision support algorithm for the selection of analytical methods in organic compounds detection for future extraterrestrial exploratory missions," which we found interesting. However, there are some points of the developed method that need to be refined to get a practical tool for practitioners. In this commentary, we have summarized our suggestions and comments mainly from the chemical/separation point of view.
Collapse
Affiliation(s)
- Gábor Járvás
- Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | - András Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary.,SCIEX, Brea, CA, USA
| |
Collapse
|
5
|
Neish CD, Lorenz RD, Turtle EP, Barnes JW, Trainer MG, Stiles B, Kirk R, Hibbitts CA, Malaska MJ. Strategies for Detecting Biological Molecules on Titan. ASTROBIOLOGY 2018; 18:571-585. [PMID: 29718687 DOI: 10.1089/ast.2017.1758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Saturn's moon Titan has all the ingredients needed to produce "life as we know it." When exposed to liquid water, organic molecules analogous to those found on Titan produce a range of biomolecules such as amino acids. Titan thus provides a natural laboratory for studying the products of prebiotic chemistry. In this work, we examine the ideal locales to search for evidence of, or progression toward, life on Titan. We determine that the best sites to identify biological molecules are deposits of impact melt on the floors of large, fresh impact craters, specifically Sinlap, Selk, and Menrva craters. We find that it is not possible to identify biomolecules on Titan through remote sensing, but rather through in situ measurements capable of identifying a wide range of biological molecules. Given the nonuniformity of impact melt exposures on the floor of a weathered impact crater, the ideal lander would be capable of precision targeting. This would allow it to identify the locations of fresh impact melt deposits, and/or sites where the melt deposits have been exposed through erosion or mass wasting. Determining the extent of prebiotic chemistry within these melt deposits would help us to understand how life could originate on a world very different from Earth. Key Words: Titan-Prebiotic chemistry-Solar system exploration-Impact processes-Volcanism. Astrobiology 18, 571-585.
Collapse
Affiliation(s)
- Catherine D Neish
- 1 Department of Earth Sciences, The University of Western Ontario , London, Canada
| | - Ralph D Lorenz
- 2 The Johns Hopkins Applied Physics Laboratory , Laurel, Maryland
| | | | - Jason W Barnes
- 3 Department of Physics, University of Idaho , Moscow, Idaho
| | | | - Bryan Stiles
- 5 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Randolph Kirk
- 6 United States Geological Survey, Astrogeology Science Center , Flagstaff, Arizona
| | | | - Michael J Malaska
- 5 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| |
Collapse
|
6
|
Blanco Y, Gallardo-Carreño I, Ruiz-Bermejo M, Puente-Sánchez F, Cavalcante-Silva E, Quesada A, Prieto-Ballesteros O, Parro V. Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummified Microbial Mat from Antarctica as a Best-Case Scenario. ASTROBIOLOGY 2017; 17:984-996. [PMID: 29016195 PMCID: PMC5655591 DOI: 10.1089/ast.2016.1467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/20/2017] [Indexed: 05/17/2023]
Abstract
The search for biomarkers of present or past life is one of the major challenges for in situ planetary exploration. Multiple constraints limit the performance and sensitivity of remote in situ instrumentation. In addition, the structure, chemical, and mineralogical composition of the sample may complicate the analysis and interpretation of the results. The aim of this work is to highlight the main constraints, performance, and complementarity of several techniques that have already been implemented or are planned to be implemented on Mars for detection of organic and molecular biomarkers on a best-case sample scenario. We analyzed a 1000-year-old desiccated and mummified microbial mat from Antarctica by Raman and IR (infrared) spectroscopies (near- and mid-IR), thermogravimetry (TG), differential thermal analysis, mass spectrometry (MS), and immunological detection with a life detector chip. In spite of the high organic content (ca. 20% wt/wt) of the sample, the Raman spectra only showed the characteristic spectral peaks of the remaining beta-carotene biomarker and faint peaks of phyllosilicates over a strong fluorescence background. IR spectra complemented the mineralogical information from Raman spectra and showed the main molecular vibrations of the humic acid functional groups. The TG-MS system showed the release of several volatile compounds attributed to biopolymers. An antibody microarray for detecting cyanobacteria (CYANOCHIP) detected biomarkers from Chroococcales, Nostocales, and Oscillatoriales orders. The results highlight limitations of each technique and suggest the necessity of complementary approaches in the search for biomarkers because some analytical techniques might be impaired by sample composition, presentation, or processing. Key Words: Planetary exploration-Life detection-Microbial mat-Life detector chip-Thermogravimetry-Raman spectroscopy-NIR-DRIFTS. Astrobiology 17, 984-996.
Collapse
Affiliation(s)
- Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - Marta Ruiz-Bermejo
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - Antonio Quesada
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Vago JL, Westall F. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. ASTROBIOLOGY 2017; 17:471-510. [PMID: 31067287 PMCID: PMC5685153 DOI: 10.1089/ast.2016.1533] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/05/2017] [Indexed: 05/19/2023]
Abstract
The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures-ExoMars-Landing sites-Mars rover-Search for life. Astrobiology 17, 471-510.
Collapse
|
8
|
Goesmann F, Brinckerhoff WB, Raulin F, Goetz W, Danell RM, Getty SA, Siljeström S, Mißbach H, Steininger H, Arevalo RD, Buch A, Freissinet C, Grubisic A, Meierhenrich UJ, Pinnick VT, Stalport F, Szopa C, Vago JL, Lindner R, Schulte MD, Brucato JR, Glavin DP, Grand N, Li X, van Amerom FHW. The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments. ASTROBIOLOGY 2017; 17:655-685. [PMID: 31067288 PMCID: PMC5685156 DOI: 10.1089/ast.2016.1551] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 04/10/2017] [Indexed: 05/09/2023]
Abstract
The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars-Mass spectrometry-Life detection-Planetary instrumentation. Astrobiology 17, 655-685.
Collapse
Affiliation(s)
- Fred Goesmann
- Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| | | | - François Raulin
- LISA, U. Paris-Est, Créteil, U. Paris Diderot, Paris, CNRS, France
| | - Walter Goetz
- Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| | | | | | - Sandra Siljeström
- RISE Research Institutes of Sweden, Bioscience and Materials/Chemistry and Materials, Stockholm, Sweden
| | - Helge Mißbach
- Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
| | | | | | - Arnaud Buch
- LPGM, CentraleParis, Chatenay-Malabry, France
| | | | - Andrej Grubisic
- NASA GSFC, Greenbelt, Maryland, USA
- University of Maryland, College Park, Maryland, USA
| | | | | | - Fabien Stalport
- LISA, U. Paris-Est, Créteil, U. Paris Diderot, Paris, CNRS, France
| | - Cyril Szopa
- LATMOS/IPSL, Guyancourt, France
- Institut Universitaire de France, Paris, France
| | | | | | | | | | | | - Noel Grand
- LISA, U. Paris-Est, Créteil, U. Paris Diderot, Paris, CNRS, France
| | - Xiang Li
- NASA GSFC, Greenbelt, Maryland, USA
- University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | | |
Collapse
|
9
|
Myrgorodska I, Javelle T, Meinert C, Meierhenrich UJ. Enantioselective Gas Chromatography in Search of the Origin of Biomolecular Asymmetry in Outer Space. Isr J Chem 2016. [DOI: 10.1002/ijch.201600067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Iuliia Myrgorodska
- Institut de Chimie de Nice ICN, UMR CNRS 7272; Université Nice Sophia Antipolis, Faculté des Sciences; ParcValrose 06108 Nice France
- Synchrotron SOLEIL; L'Orme des Merisiers; BP 48 Saint Aubin 91192 Gif-sur-Yvette France
| | - Thomas Javelle
- Institut de Chimie de Nice ICN, UMR CNRS 7272; Université Nice Sophia Antipolis, Faculté des Sciences; ParcValrose 06108 Nice France
| | - Cornelia Meinert
- Institut de Chimie de Nice ICN, UMR CNRS 7272; Université Nice Sophia Antipolis, Faculté des Sciences; ParcValrose 06108 Nice France
| | - Uwe J. Meierhenrich
- Institut de Chimie de Nice ICN, UMR CNRS 7272; Université Nice Sophia Antipolis, Faculté des Sciences; ParcValrose 06108 Nice France
| |
Collapse
|