1
|
Martínez-Pabello PU, Navarro-González R, Walls X, Pi-Puig T, González-Chávez JL, de la Rosa JG, Molina P, Zamora O. Production of nitrates and perchlorates by laser ablation of sodium chloride in simulated Martian atmospheres. Implications for their formation by electric discharges in dust devils. LIFE SCIENCES IN SPACE RESEARCH 2019; 22:125-136. [PMID: 31421844 DOI: 10.1016/j.lssr.2019.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 06/10/2023]
Abstract
Nitrates and perchlorates are present both on Earth and Mars. In the Martian environment perchlorates dominate over nitrates whereas on Earth is contrariwise. This implies that the mechanisms responsible for their formation are different for both planets. The chemical elements required for their formation are nitrogen and chlorine, which are present in the atmosphere and surface, respectively. Dust in the Martian atmosphere causes atmospheric perturbations that lead to the development of dust-devils and sandstorms. Dust devils contain both chemical elements simultaneously, and normally generate high electric fields that can trigger the formation of electric discharges. Here we present laboratory experiments of this phenomenon using laser ablation of a sodium chloride (NaCl) plate in two different simulated atmospheres: (1) 96% CO2, 2% N2 and 2% Ar; and (2) 66% CO2, 33% N2 and 1% Ar. The dust that condensed and accumulated on the walls of the reactor was analyzed by different analytical techniques that included Fourier transform infrared spectroscopy, visible spectroscopy using azo dyes, thermogravimetry/simultaneous thermal analyses coupled to mass spectrometry, powder X-ray diffraction, and ion chromatography. The main components of the ablated dust corresponded to NaCl ≥ 91.5%, sodium nitrate (NaNO3 = 1.6-6.0%), and sodium perchlorate (NaClO4 ∼ 0.2-0.3%). It is interesting to note that these salts formed in a dry process that is relevant to Mars today. A thermochemical model was used to understand the chemical steps that led to the formation of these salts in the gas phase. The NaNO3NaClO4 (wt/wt) ratio of this process was estimated to vary from 5.0 to 30.0; this ratio is too high compared to that found on Mars (NO3-ClO4- (wt/wt)) from 0.004 to 0.13). This implies that gaseous NaCl was not efficiently oxidized to perchlorate by the electric discharge process. We propose instead that gaseous metal chlorides (e.g., MgCl2, NaCl, CaCl2, KCl) were supplied to the atmosphere by the volatilization of chloride minerals present in the dust by electric discharges generated in dust devils and were subsequently oxidized to perchlorate by photochemical processes. Further work is required to assess the relative contribution of this possible source.
Collapse
Affiliation(s)
- Pável U Martínez-Pabello
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico
| | - Rafael Navarro-González
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico.
| | - Xavier Walls
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico
| | - Teresa Pi-Puig
- Departamento de Geoquímica, Instituto de Geología y LANGEM (Laboratorio Nacional de Geoquímica y Mineralogía), Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Coyoacán, Ciudad de México 04510, Mexico
| | - José L González-Chávez
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - José G de la Rosa
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico
| | - Paola Molina
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico
| | - Olivia Zamora
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología y LANGEM, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Martian slope streaks as plausible indicators of transient water activity. Sci Rep 2017; 7:7074. [PMID: 28765566 PMCID: PMC5539097 DOI: 10.1038/s41598-017-07453-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/27/2017] [Indexed: 12/05/2022] Open
Abstract
Slope streaks have been frequently observed in the equatorial, low thermal inertia and dusty regions of Mars. The reason behind their formation remains unclear with proposed hypotheses for both dry and wet mechanisms. Here, we report an up-to-date distribution and morphometric investigation of Martian slope streaks. We find: (i) a remarkable coexistence of the slope streak distribution with the regions on Mars with high abundances of water-equivalent hydrogen, chlorine, and iron; (ii) favourable thermodynamic conditions for transient deliquescence and brine development in the slope streak regions; (iii) a significant concurrence of slope streak distribution with the regions of enhanced atmospheric water vapour concentration, thus suggestive of a present-day regolith-atmosphere water cycle; and (iv) terrain preferences and flow patterns supporting a wet mechanism for slope streaks. These results suggest a strong local regolith-atmosphere water coupling in the slope streak regions that leads to the formation of these fluidised features. Our conclusions can have profound astrobiological, habitability, environmental, and planetary protection implications.
Collapse
|