1
|
Huld S, McMahon S, Sjöberg S, Huang P, Neubeck A. Chemical Gardens Mimic Electron Paramagnetic Resonance Spectra and Morphology of Biogenic Mn Oxides. ASTROBIOLOGY 2023; 23:24-32. [PMID: 36450112 PMCID: PMC9810355 DOI: 10.1089/ast.2021.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Manganese (Mn) oxides are ubiquitous in nature and occur as both biological and abiotic minerals, but empirically distinguishing between the two remains a problem. Recently, electron paramagnetic resonance (EPR) spectroscopy has been proposed for this purpose. It has been reported that biogenic Mn oxides display a characteristic narrow linewidth in contrast to their pure abiotic counterparts, which is explained in part by the large number of cation vacancies that form within the layers of biogenic Mn oxides. It was, therefore, proposed that natural samples that display a narrow EPR linewidth, ΔHpp < 580G, could be assigned to a biogenic origin. However, in poorly crystalline or amorphous solids, both dipolar broadening and exchange narrowing simultaneously determine the linewidth. Considering that the spectral linewidth is governed by several mechanisms, this approach might be questioned. In this study, we report synthetic chemical garden Mn oxide biomorphs that exhibit both morphologically life-like structures and narrow EPR linewidths, suggesting that a narrow EPR line may be unsuitable as reliable evidence in assessment of biogenicity.
Collapse
Affiliation(s)
- Sigrid Huld
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Susanne Sjöberg
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - Ping Huang
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Kminek G, Benardini JN, Brenker FE, Brooks T, Burton AS, Dhaniyala S, Dworkin JP, Fortman JL, Glamoclija M, Grady MM, Graham HV, Haruyama J, Kieft TL, Koopmans M, McCubbin FM, Meyer MA, Mustin C, Onstott TC, Pearce N, Pratt LM, Sephton MA, Siljeström S, Sugahara H, Suzuki S, Suzuki Y, van Zuilen M, Viso M. COSPAR Sample Safety Assessment Framework (SSAF). ASTROBIOLOGY 2022; 22:S186-S216. [PMID: 35653292 DOI: 10.1089/ast.2022.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.
Collapse
Affiliation(s)
- Gerhard Kminek
- European Space Agency, Mars Exploration Group, Noordwijk, The Netherlands
| | - James N Benardini
- NASA Headquarters, Office of Planetary Protection, Washington, DC, USA
| | - Frank E Brenker
- Goethe University, Department of Geoscience, Frankfurt, Germany
| | - Timothy Brooks
- UK Health Security Agency, Rare & Imported Pathogens Laboratory, Salisbury, UK
| | - Aaron S Burton
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Suresh Dhaniyala
- Clarkson University, Department of Mechanical and Aeronautical Engineering, Potsdam, New York, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | - Jeffrey L Fortman
- Security Programs, Engineering Biology Research Consortium, Emeryville, USA
| | - Mihaela Glamoclija
- Rutgers University, Department of Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Monica M Grady
- The Open University, Faculty of Science, Technology, Engineering & Mathematics, Milton Keynes, UK
| | - Heather V Graham
- NASA Goddard Space Flight Center, Astrochemistry Laboratory, Greenbelt, Maryland, USA
| | - Junichi Haruyama
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Thomas L Kieft
- New Mexico Institute of Mining and Technology, Biology Department, Socorro, New Mexico, USA
| | - Marion Koopmans
- Erasmus University Medical Centre, Department of Viroscience, Rotterdam, The Netherlands
| | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Michael A Meyer
- NASA Headquarters, Planetary Science Division, Washington, DC, USA
| | | | - Tullis C Onstott
- Princeton University, Department of Geosciences, Princeton, New Jersey, USA
| | - Neil Pearce
- London School of Hygiene & Tropical Medicine, Department of Medical Statistics, London, UK
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Emeritus, Bloomington, Indiana, USA
| | - Mark A Sephton
- Imperial College London, Department of Earth Science & Engineering, London, UK
| | - Sandra Siljeström
- RISE, Research Institutes of Sweden, Department of Methodology, Textiles and Medical Technology, Stockholm, Sweden
| | - Haruna Sugahara
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Shino Suzuki
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science, Sagamihara Kanagawa, Japan
| | - Yohey Suzuki
- University of Tokyo, Graduate School of Science, Tokyo, Japan
| | - Mark van Zuilen
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- European Institute for Marine Studies (IUEM), CNRS-UMR6538 Laboratoire Geo-Ocean, Plouzané, France
| | | |
Collapse
|
3
|
McMahon S, Ivarsson M, Wacey D, Saunders M, Belivanova V, Muirhead D, Knoll P, Steinbock O, Frost DA. Dubiofossils from a Mars-analogue subsurface palaeoenvironment: The limits of biogenicity criteria. GEOBIOLOGY 2021; 19:473-488. [PMID: 33951268 DOI: 10.1111/gbi.12445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
The search for a fossil record of Earth's deep biosphere, partly motivated by potential analogies with subsurface habitats on Mars, has uncovered numerous assemblages of inorganic microfilaments and tubules inside ancient pores and fractures. Although these enigmatic objects are morphologically similar to mineralized microorganisms (and some contain organic carbon), they also resemble some abiotic structures. Palaeobiologists have responded to this ambiguity by evaluating problematic filaments against checklists of "biogenicity criteria". Here, we describe material that tests the limits of this approach. We sampled Jurassic calcite veins formed through subseafloor serpentinization, a water-rock reaction that can fuel the deep biosphere and is known to have occurred widely on Mars. At two localities ~4 km apart, veins contained curving, branched microfilaments composed of Mg-silicate and Fe-oxide minerals. Using a wide range of analytical techniques including synchrotron X-ray microtomography and scanning transmission electron microscopy, we show that these features meet many published criteria for biogenicity and are comparable to fossilized cryptoendolithic fungi or bacteria. However, we argue that abiotic processes driven by serpentinization could account for the same set of lifelike features, and report a chemical garden experiment that supports this view. These filaments are, therefore, most objectively described as dubiofossils, a designation we here defend from criticism and recommend over alternative approaches, but which nevertheless signifies an impasse. Similar impasses can be anticipated in the future exploration of subsurface palaeo-habitats on Earth and Mars. To avoid them, further studies are required in biomimetic geochemical self-organization, microbial taphonomy and micro-analytical techniques, with a focus on subsurface habitats.
Collapse
Affiliation(s)
- Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- School of Geosciences, Grant Institute, University of Edinburgh, Edinburgh, UK
| | - Magnus Ivarsson
- Department of Paleobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - David Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Martin Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Veneta Belivanova
- Department of Paleobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - David Muirhead
- School of Geosciences, King's College, University of Aberdeen, Aberdeen, UK
| | - Pamela Knoll
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Daniel A Frost
- Department of Earth & Planetary Science, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Trace Element Concentrations Associated with Mid-Paleozoic Microfossils as Biosignatures to Aid in the Search for Life. Life (Basel) 2021; 11:life11020142. [PMID: 33668639 PMCID: PMC7918189 DOI: 10.3390/life11020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Identifying microbial fossils in the rock record is a difficult task because they are often simple in morphology and can be mimicked by non-biological structures. Biosignatures are essential for identifying putative fossils as being definitively biological in origin, but are often lacking due to geologic effects which can obscure or erase such signs. As such, there is a need for robust biosignature identification techniques. Here we show new evidence for the application of trace elements as biosignatures in microfossils. We found elevated concentrations of magnesium, aluminum, manganese, iron, and strontium colocalized with carbon and sulfur in microfossils from Drummond Basin, a mid-Paleozoic hot spring deposit in Australia. Our results also suggest that trace element sequestrations from modern hot spring deposits persist through substantial host rock alteration. Because some of the oldest fossils on Earth are found in hot spring deposits and ancient hot spring deposits are also thought to occur on Mars, this biosignature technique may be utilized as a valuable tool to aid in the search for extraterrestrial life.
Collapse
|
5
|
Rouillard J, van Zuilen M, Pisapia C, Garcia-Ruiz JM. An Alternative Approach for Assessing Biogenicity. ASTROBIOLOGY 2021; 21:151-164. [PMID: 33544651 PMCID: PMC7876362 DOI: 10.1089/ast.2020.2282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
The search for signs of life in the ancient rock record, extreme terrestrial environments, and other planetary bodies requires a well-established, universal, and unambiguous test of biogenicity. This is notably true for cellular remnants of microbial life, since their relatively simple morphologies resemble various abiogenic microstructures that occur in nature. Although lists of qualitative biogenicity criteria have been devised, debates regarding the biogenicity of many ancient microfossils persist to this day. We propose here an alternative quantitative approach for assessing the biogenicity of putative microfossils. In this theoretical approach, different hypotheses-involving biology or not and depending on the geologic setting-are put forward to explain the observed objects. These hypotheses correspond to specific types of microstructures/systems. Using test samples, the morphology and/or chemistry of these systems are then characterized at the scale of populations. Morphologic parameters include, for example, circularity, aspect ratio, and solidity, while chemical parameters could include elementary ratios (e.g., N/C ratio), isotopic enrichments (e.g., δ13C), or chirality (e.g., molar proportion of stereoisomers), among others. Statistic trends distinguishing the different systems are then searched for empirically. The trends found are translated into "decision spaces" where the different systems are quantitatively discriminated and where the potential microfossil population can be located as a single point. This approach, which is formulated here on a theoretical level, will solve several problems associated with the classical qualitative criteria of biogenicity. Most importantly, it could be applied to reveal the existence of cellular life on other planets, for which characteristics of morphology and chemical composition are difficult to predict.
Collapse
Affiliation(s)
- Joti Rouillard
- Laboratario de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC—Universidad de Granada, Armilla, Spain
| | - Mark van Zuilen
- Institut de Physique du Globe de Paris, Université de Paris, CNRS UMR 7154, Paris, France
| | - Céline Pisapia
- Institut de Physique du Globe de Paris, Université de Paris, CNRS UMR 7154, Paris, France
| | - Juan-Manuel Garcia-Ruiz
- Laboratario de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC—Universidad de Granada, Armilla, Spain
| |
Collapse
|
6
|
Gan T, Luo T, Pang K, Zhou C, Zhou G, Wan B, Li G, Yi Q, Czaja AD, Xiao S. Cryptic terrestrial fungus-like fossils of the early Ediacaran Period. Nat Commun 2021; 12:641. [PMID: 33510166 PMCID: PMC7843733 DOI: 10.1038/s41467-021-20975-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
The colonization of land by fungi had a significant impact on the terrestrial ecosystem and biogeochemical cycles on Earth surface systems. Although fungi may have diverged ~1500-900 million years ago (Ma) or even as early as 2400 Ma, it is uncertain when fungi first colonized the land. Here we report pyritized fungus-like microfossils preserved in the basal Ediacaran Doushantuo Formation (~635 Ma) in South China. These micro-organisms colonized and were preserved in cryptic karstic cavities formed via meteoric water dissolution related to deglacial isostatic rebound after the terminal Cryogenian snowball Earth event. They are interpreted as eukaryotes and probable fungi, thus providing direct fossil evidence for the colonization of land by fungi and offering a key constraint on fungal terrestrialization.
Collapse
Affiliation(s)
- Tian Gan
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Taiyi Luo
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Ke Pang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chuanming Zhou
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Guanghong Zhou
- School of Geography and Resources, Guizhou Education University, Guiyang, China
| | - Bin Wan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Gang Li
- Institute of High Energy Physics, CAS, Beijing, China
| | - Qiru Yi
- University of Chinese Academy of Sciences, Beijing, China
| | - Andrew D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, OH, USA
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Rouillard J, García-Ruiz JM, Kah L, Gérard E, Barrier L, Nabhan S, Gong J, van Zuilen MA. Identifying microbial life in rocks: Insights from population morphometry. GEOBIOLOGY 2020; 18:282-305. [PMID: 31876987 DOI: 10.1111/gbi.12377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/13/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The identification of cellular life in the rock record is problematic, since microbial life forms, and particularly bacteria, lack sufficient morphologic complexity to be effectively distinguished from certain abiogenic features in rocks. Examples include organic pore-fillings, hydrocarbon-containing fluid inclusions, organic coatings on exfoliated crystals and biomimetic mineral aggregates (biomorphs). This has led to the interpretation and re-interpretation of individual microstructures in the rock record. The morphologic description of entire populations of microstructures, however, may provide support for distinguishing between preserved micro-organisms and abiogenic objects. Here, we present a statistical approach based on quantitative morphological description of populations of microstructures. Images of modern microbial populations were compared to images of two relevant types of abiogenic microstructures: interstitial spaces and silica-carbonate biomorphs. For the populations of these three systems, the size, circularity, and solidity of individual particles were calculated. Subsequently, the mean/SD, skewness, and kurtosis of the statistical distributions of these parameters were established. This allowed the qualitative and quantitative comparison of distributions in these three systems. In addition, the fractal dimension and lacunarity of the populations were determined. In total, 11 parameters, independent of absolute size or shape, were used to characterize each population of microstructures. Using discriminant analysis with parameter subsets, it was found that size and shape distributions are typically sufficient to discriminate populations of biologic and abiogenic microstructures. Analysis of ancient, yet unambiguously biologic, samples (1.0 Ga Angmaat Formation, Baffin Island, Canada) suggests that taphonomic effects can alter morphometric characteristics and complicate image analysis; therefore, a wider range of microfossil assemblages should be studied in the future before automated analyses can be developed. In general, however, it is clear from our results that there is great potential for morphometric descriptions of populations in the context of life recognition in rocks, either on Earth or on extraterrestrial bodies.
Collapse
Affiliation(s)
- Joti Rouillard
- Equipe Géomicrobiologie, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investígacìones Cientificas-Universidad de Granada, Granada, Spain
| | - Linda Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Emmanuelle Gérard
- Equipe Géomicrobiologie, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Laurie Barrier
- Equipe Tectonique et Mécanique de la Lithosphère, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Sami Nabhan
- Equipe Géomicrobiologie, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Jian Gong
- Equipe Géomicrobiologie, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Mark A van Zuilen
- Equipe Géomicrobiologie, Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| |
Collapse
|
8
|
Gangidine A, Havig JR, Fike DA, Jones C, Hamilton TL, Czaja AD. Trace Element Concentrations in Hydrothermal Silica Deposits as a Potential Biosignature. ASTROBIOLOGY 2020; 20:525-536. [PMID: 31859527 DOI: 10.1089/ast.2018.1994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Uncovering and understanding the chemical and fossil record of ancient life is crucial to understanding how life arose, evolved, and distributed itself across Earth. Potential signs of ancient life, however, are often challenging to establish as definitively biological and require multiple lines of evidence. Hydrothermal silica deposits may preserve some of the most ancient evidence of life on Earth, and such deposits are also suggested to exist on the surface of Mars. Here we use micron-scale elemental mapping by secondary ion mass spectrometry to explore for trace elements that are preferentially sequestered by microbial life and subsequently preserved in hydrothermal deposits. The spatial distributions and concentrations of trace elements associated with life in such hydrothermal silica deposits may have a novel application as a biosignature in constraining ancient life on Earth as well as the search for evidence of past life on Mars. We find that active microbial mats and recent siliceous sinter deposits from an alkaline hot spring in Yellowstone National Park appear to sequester and preserve Ga, Fe, and perhaps Mn through early diagenesis as indicators of the presence of life during formation.
Collapse
Affiliation(s)
- Andrew Gangidine
- Department of Geology, University of Cincinnati, Cincinnati, Ohio
| | - Jeff R Havig
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota
| | - David A Fike
- Department of Earth and Planetary Sciences, Washington University in St. Louis, Saint Louis, Missouri
| | - Clive Jones
- Department of Earth and Planetary Sciences, Washington University in St. Louis, Saint Louis, Missouri
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology and the Biotechnology Institute, University of Minnesota, St. Paul, Minnesota
| | - Andrew D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
9
|
Mineralogical and Geochemical Characterization of Asbestiform Todorokite, Birnessite, and Ranciéite, and Their host Mn-Rich Deposits from Serra D’Aiello (Southern Italy). FIBERS 2020. [DOI: 10.3390/fib8020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Manganese ores, especially the oxyhydroxides in their different forms, are the dominant Mn-bearing minerals that occur in marine and terrestrial environments, where they are typically found as poorly crystalline and intermixed phases. Mn oxyhydroxides have a huge range of industrial applications and are able to exert a strong control on the mobility of trace metals. This paper reports the results of a detailed study on the Mn oxyhydroxides occurring in the manganiferous deposit outcropping in the Messinian sediments from Serra D’Aiello (Southern Italy). Nine Mn samples were characterized in detail using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), thermogravimetry (TG), transmission electron microscopy combined with energy dispersive spectrometry (TEM/EDS), and X-ray fluorescence (XRF). The results indicated that the Mn deposit included the oxyhydroxide mineral species birnessite, todorokite, and rancièite. The size, morphology, and chemical composition of Mn oxyhydroxide samples were investigated in order to define their impact on the environment and human health. Todorokite displayed asbestiform shapes and could disperse fibers of breathable size in the air. Furthermore, since in-depth characterization of minerals within Mn deposits may be the first step toward understanding the genetic processes of manganese deposits, hypotheses about the genesis of the Mn oxyhydroxide deposits were discussed.
Collapse
|
10
|
McMahon S. Earth's earliest and deepest purported fossils may be iron-mineralized chemical gardens. Proc Biol Sci 2019; 286:20192410. [PMID: 31771469 PMCID: PMC6939263 DOI: 10.1098/rspb.2019.2410] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recognizing fossil microorganisms is essential to the study of life's origin and evolution and to the ongoing search for life on Mars. Purported fossil microbes in ancient rocks include common assemblages of iron-mineral filaments and tubes. Recently, such assemblages have been interpreted to represent Earth's oldest body fossils, Earth's oldest fossil fungi, and Earth's best analogues for fossils that might form in the basaltic Martian subsurface. Many of these putative fossils exhibit hollow circular cross-sections, lifelike (non-crystallographic, constant-thickness, and bifurcate) branching, anastomosis, nestedness within ‘sheaths’, and other features interpreted as strong evidence for a biological origin, since no abiotic process consistent with the composition of the filaments has been shown to produce these specific lifelike features either in nature or in the laboratory. Here, I show experimentally that abiotic chemical gardening can mimic such purported fossils in both morphology and composition. In particular, chemical gardens meet morphological criteria previously proposed to establish biogenicity, while also producing the precursors to the iron minerals most commonly constitutive of filaments in the rock record. Chemical gardening is likely to occur in nature. Such microstructures should therefore not be assumed to represent fossil microbes without independent corroborating evidence.
Collapse
Affiliation(s)
- Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.,School of Geosciences, Grant Institute, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
| |
Collapse
|
11
|
McMahon S, Ivarsson M. A New Frontier for Palaeobiology: Earth's Vast Deep Biosphere. Bioessays 2019; 41:e1900052. [PMID: 31241200 DOI: 10.1002/bies.201900052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/29/2019] [Indexed: 11/11/2022]
Abstract
Diverse micro-organisms populate a global deep biosphere hosted by rocks and sediments beneath land and sea, containing more biomass than any other biome except forests. This paper reviews an emerging palaeobiological archive of these dark habitats: microfossils preserved in ancient pores and fractures in the crust. This archive, seemingly dominated by mineralized filaments (although rods and coccoids are also reported), is presently far too sparsely sampled and poorly understood to reveal trends in the abundance, distribution, or diversity of deep life through time. New research is called for to establish the nature and extent of the fossil record of Earth's deep biosphere by combining systematic exploration, rigorous microanalysis, and experimental studies of both microbial preservation and the formation of abiotic pseudofossils within the crust. It is concluded that the fossil record of Earth's largest microbial habitat may still have much to tell us about the history of life, the evolution of biogeochemical cycles, and the search for life on Mars.
Collapse
Affiliation(s)
- Sean McMahon
- School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK.,UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Magnus Ivarsson
- Department of Biology, University of Southern Denmark, DK-5230, Odense, Denmark.,Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, SE-104 05, Sweden
| |
Collapse
|