1
|
Edri R, Williams LD, Frenkel-Pinter M. From Catalysis of Evolution to Evolution of Catalysis. Acc Chem Res 2024; 57:3081-3092. [PMID: 39373892 PMCID: PMC11542150 DOI: 10.1021/acs.accounts.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
ConspectusThe mystery of the origins of life is one of the most difficult yet intriguing challenges to which humanity has grappled. How did biopolymers emerge in the absence of enzymes (evolved biocatalysts), and how did long-lasting chemical evolution find a path to the highly selective complex biology that we observe today? In this paper, we discuss a chemical framework that explores the very roots of catalysis, demonstrating how standard catalytic activity based on chemical and physical principles can evolve into complex machineries. We provide several examples of how prebiotic catalysis by small molecules can be exploited to facilitate polymerization, which in biology has transformed the nature of catalysis. Thus, catalysis evolved, and evolution was catalyzed, during the transformation of prebiotic chemistry to biochemistry. Traditionally, a catalyst is defined as a substance that (i) speeds up a chemical reaction by lowering activation energy through different chemical mechanisms and (ii) is not consumed during the course of the reaction. However, considering prebiotic chemistry, which involved a highly diverse chemical space (i.e., high number of potential reactants and products) and constantly changing environment that lacked highly sophisticated catalytic machinery, we stress here that a more primitive, broader definition should be considered. Here, we consider a catalyst as any chemical species that lowers activation energy. We further discuss various demonstrations of how simple prebiotic molecules such as hydroxy acids and mercaptoacids promote the formation of peptide bonds via energetically favored exchange reactions. Even though the small molecules are partially regenerated and partially retained within the resulting oligomers, these prebiotic catalysts fulfill their primary role. Catalysis by metal ions and in complex chemical mixtures is also highlighted. We underline how chemical evolution is primarily dictated by kinetics rather than thermodynamics and demonstrate a novel concept to support this notion. Moreover, we propose a new perspective on the role of water in prebiotic catalysis. The role of water as simply a "medium" obscures its importance as an active participant in the chemistry of life, specifically as a very efficient catalyst and as a participant in many chemical transformations. Here we highlight the unusual contribution of water to increasing complexification over the course of chemical evolution. We discuss possible pathways by which prebiotic catalysis promoted chemical selection and complexification. Taken together, this Account draws a connection line between prebiotic catalysis and contemporary biocatalysis and demonstrates that the fundamental elements of chemical catalysis are embedded within today's biocatalysts. This Account illustrates how the evolution of catalysis was intertwined with chemical evolution from the very beginning.
Collapse
Affiliation(s)
- Rotem Edri
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Loren Dean Williams
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- Center
for the Origins of Life, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Moran Frenkel-Pinter
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Malas J, Russo DC, Bollengier O, Malaska MJ, Lopes RMC, Kenig F, Meyer-Dombard DR. Biological functions at high pressure: transcriptome response of Shewanella oneidensis MR-1 to hydrostatic pressure relevant to Titan and other icy ocean worlds. Front Microbiol 2024; 15:1293928. [PMID: 38414766 PMCID: PMC10896736 DOI: 10.3389/fmicb.2024.1293928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
High hydrostatic pressure (HHP) is a key driver of life's evolution and diversification on Earth. Icy moons such as Titan, Europa, and Enceladus harbor potentially habitable high-pressure environments within their subsurface oceans. Titan, in particular, is modeled to have subsurface ocean pressures ≥ 150 MPa, which are above the highest pressures known to support life on Earth in natural ecosystems. Piezophiles are organisms that grow optimally at pressures higher than atmospheric (0.1 MPa) pressure and have specialized adaptations to the physical constraints of high-pressure environments - up to ~110 MPa at Challenger Deep, the highest pressure deep-sea habitat explored. While non-piezophilic microorganisms have been shown to survive short exposures at Titan relevant pressures, the mechanisms of their survival under such conditions remain largely unelucidated. To better understand these mechanisms, we have conducted a study of gene expression for Shewanella oneidensis MR-1 using a high-pressure experimental culturing system. MR-1 was subjected to short-term (15 min) and long-term (2 h) HHP of 158 MPa, a value consistent with pressures expected near the top of Titan's subsurface ocean. We show that MR-1 is metabolically active in situ at HHP and is capable of viable growth following 2 h exposure to 158 MPa, with minimal pressure training beforehand. We further find that MR-1 regulates 264 genes in response to short-term HHP, the majority of which are upregulated. Adaptations include upregulation of the genes argA, argB, argC, and argF involved in arginine biosynthesis and regulation of genes involved in membrane reconfiguration. MR-1 also utilizes stress response adaptations common to other environmental extremes such as genes encoding for the cold-shock protein CspG and antioxidant defense related genes. This study suggests Titan's ocean pressures may not limit life, as microorganisms could employ adaptations akin to those demonstrated by terrestrial organisms.
Collapse
Affiliation(s)
- Judy Malas
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Daniel C. Russo
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Olivier Bollengier
- Nantes Université, Univ Angers, Le Mans Université, CNRS, Laboratoire de Planétologie et Géosciences, LPG UMR 6112, Nantes, France
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Rosaly M. C. Lopes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Fabien Kenig
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - D'Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Neveu M, Quinn R, Barge LM, Craft KL, German CR, Getty S, Glein C, Parra M, Burton AS, Cary F, Corpolongo A, Fifer L, Gangidine A, Gentry D, Georgiou CD, Haddadin Z, Herbold C, Inaba A, Jordan SF, Kalucha H, Klier P, Knicely K, Li AY, McNally P, Millan M, Naz N, Raj CG, Schroedl P, Timm J, Yang Z. Future of the Search for Life: Workshop Report. ASTROBIOLOGY 2024; 24:114-129. [PMID: 38227837 DOI: 10.1089/ast.2022.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The 2-week, virtual Future of the Search for Life science and engineering workshop brought together more than 100 scientists, engineers, and technologists in March and April 2022 to provide their expert opinion on the interconnections between life-detection science and technology. Participants identified the advances in measurement and sampling technologies they believed to be necessary to perform in situ searches for life elsewhere in our Solar System, 20 years or more in the future. Among suggested measurements for these searches, those pertaining to three potential indicators of life termed "dynamic disequilibrium," "catalysis," and "informational polymers" were identified as particularly promising avenues for further exploration. For these three indicators, small breakout groups of participants identified measurement needs and knowledge gaps, along with corresponding constraints on sample handling (acquisition and processing) approaches for a variety of environments on Enceladus, Europa, Mars, and Titan. Despite the diversity of these environments, sample processing approaches all tend to be more complex than those that have been implemented on missions or envisioned for mission concepts to date. The approaches considered by workshop breakout groups progress from nondestructive to destructive measurement techniques, and most involve the need for fluid (especially liquid) sample processing. Sample processing needs were identified as technology gaps. These gaps include technology and associated sampling strategies that allow the preservation of the thermal, mechanical, and chemical integrity of the samples upon acquisition; and to optimize the sample information obtained by operating suites of instruments on common samples. Crucially, the interplay between science-driven life-detection strategies and their technological implementation highlights the need for an unprecedented level of payload integration and extensive collaboration between scientists and engineers, starting from concept formulation through mission deployment of life-detection instruments and sample processing systems.
Collapse
Affiliation(s)
- Marc Neveu
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Richard Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Kathleen L Craft
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| | | | | | | | - Macarena Parra
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - Francesca Cary
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, Mānoa, Hawaii, USA
| | - Andrea Corpolongo
- Department of Geosciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lucas Fifer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Andrew Gangidine
- Office of Development, Yale University, New Haven, Connecticut, USA
| | - Diana Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - Zaid Haddadin
- Department of Electrical and Computer Engineering, University of California, San Diego, California, USA
| | - Craig Herbold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Aila Inaba
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Seán F Jordan
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Hemani Kalucha
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Pavel Klier
- NASA Ames Research Center, Moffett Field, California, USA
- NASA Postdoctoral Program, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Kas Knicely
- Geophysical Institute, University of Alaska, Fairbanks, Alaska, USA
| | - An Y Li
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Patrick McNally
- Space Physics Research Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - Maëva Millan
- Laboratory Atmosphere and Space Observations, Guyancourt, France
| | - Neveda Naz
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter Schroedl
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jennifer Timm
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
4
|
Carr CE, Ramírez-Colón JL, Duzdevich D, Lee S, Taniguchi M, Ohshiro T, Komoto Y, Soderblom JM, Zuber MT. Solid-State Single-Molecule Sensing with the Electronic Life-Detection Instrument for Enceladus/Europa (ELIE). ASTROBIOLOGY 2023; 23:1056-1070. [PMID: 37782210 DOI: 10.1089/ast.2022.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Growing evidence of the potential habitability of Ocean Worlds across our solar system is motivating the advancement of technologies capable of detecting life as we know it-sharing a common ancestry or physicochemical origin with life on Earth-or don't know it, representing a distinct emergence of life different than our one known example. Here, we propose the Electronic Life-detection Instrument for Enceladus/Europa (ELIE), a solid-state single-molecule instrument payload that aims to search for life based on the detection of amino acids and informational polymers (IPs) at the parts per billion to trillion level. As a first proof-of-principle in a laboratory environment, we demonstrate the single-molecule detection of the amino acid L-proline at a 10 μM concentration in a compact system. Based on ELIE's solid-state quantum electronic tunneling sensing mechanism, we further propose the quantum property of the HOMO-LUMO gap (energy difference between a molecule's highest energy-occupied molecular orbital and lowest energy-unoccupied molecular orbital) as a novel metric to assess amino acid complexity. Finally, we assess the potential of ELIE to discriminate between abiotically and biotically derived α-amino acid abundance distributions to reduce the false positive risk for life detection. Nanogap technology can also be applied to the detection of nucleobases and short sequences of IPs such as, but not limited to, RNA and DNA. Future missions may utilize ELIE to target preserved biosignatures on the surface of Mars, extant life in its deep subsurface, or life or its biosignatures in a plume, surface, or subsurface of ice moons such as Enceladus or Europa. One-Sentence Summary: A solid-state nanogap can determine the abundance distribution of amino acids, detect nucleic acids, and shows potential for detecting life as we know it and life as we don't know it.
Collapse
Affiliation(s)
- Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - José L Ramírez-Colón
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Daniel Duzdevich
- Massachusetts General Hospital, Department of Molecular Biology, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
- Current address: Department of Chemistry, University of Chicago, Chicago, Illinois, USA
| | - Sam Lee
- MIT Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, USA
| | - Masateru Taniguchi
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Takahito Ohshiro
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Yuki Komoto
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Jason M Soderblom
- MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - M T Zuber
- MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Georgiou CD, McKay C, Reymond JL. Organic Catalytic Activity as a Method for Agnostic Life Detection. ASTROBIOLOGY 2023; 23:1118-1127. [PMID: 37523279 DOI: 10.1089/ast.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An ideal life detection instrument would have high sensitivity but be insensitive to abiotic processes and would be capable of detecting life with alternate molecular structures. In this study, we propose that catalytic activity can be the basis of a nearly ideal life detection instrument. There are several advantages to catalysis as an agnostic life detection method. Demonstrating catalysis does not necessarily require culturing/growing the alien life and in fact may persist even in dead biomass for some time, and the amplification by catalysis is large even by minute amounts of catalysts and, hence, can be readily detected against abiotic background rates. In specific, we propose a hydrolytic catalysis detection instrument that could detect activity in samples of extraterrestrial organic material from unknown life. The instrument uses chromogenic assay-based detection of various hydrolytic catalytic activities, which are matched to corresponding artificial substrates having the same, chromogenic (preferably fluorescent) upon release, group; D- and L-enantiomers of these substrates can be used to also answer the question whether unknown life is chiral. Since catalysis is a time-proportional product-concentration amplification process, hydrolytic catalytic activity can be measured on a sample of even a minute size, and with instruments based on, for example, optofluidic chip technology.
Collapse
Affiliation(s)
| | | | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Sweeney KJ, Le T, Jorge MZ, Schellinger JG, Leman LJ, Müller UF. Peptide conjugates with polyaromatic hydrocarbons can benefit the activity of catalytic RNAs. Chem Sci 2023; 14:10318-10328. [PMID: 37772096 PMCID: PMC10529712 DOI: 10.1039/d3sc03540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Early stages of life likely employed catalytic RNAs (ribozymes) in many functions that are today filled by proteins. However, the earliest life forms must have emerged from heterogenous chemical mixtures, which included amino acids, short peptides, and many other compounds. Here we explored whether the presence of short peptides can help the emergence of catalytic RNAs. To do this, we conducted an in vitro selection for catalytic RNAs from randomized sequence in the presence of ten different peptides with a prebiotically plausible length of eight amino acids. This in vitro selection generated dozens of ribozymes, one of them with ∼900-fold higher activity in the presence of one specific peptide. Unexpectedly, the beneficial peptide had retained its N-terminal Fmoc protection group, and this group was required to benefit ribozyme activity. The same, or higher benefit resulted from peptide conjugates with prebiotically plausible polyaromatic hydrocarbons (PAHs) such as fluorene and naphthalene. This shows that PAH-peptide conjugates can act as potent cofactors to enhance ribozyme activity. The results are discussed in the context of the origin of life.
Collapse
Affiliation(s)
- Kevin J Sweeney
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Tommy Le
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Micaella Z Jorge
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Joan G Schellinger
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Luke J Leman
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
7
|
Li Y, Collins DA, Grintzalis K. A Simple Biochemical Method for the Detection of Proteins as Biomarkers of Life on Martian Soil Simulants and the Impact of UV Radiation. Life (Basel) 2023; 13:life13051150. [PMID: 37240795 DOI: 10.3390/life13051150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The search for life on other planets relies on the detection of biosignatures of life. Many macromolecules have been suggested as potential targets, among which are proteins that are considered vital components of life due to their essential roles in forming cellular structures, facilitating cellular communication and signaling, and catalyzing metabolic reactions. In this context, accurate quantification of protein signatures in soil would be advantageous, and while several proposed methods exist, which are limited by their sensitivity and specificity, their applicability needs further testing and validation. To this aim, we optimized a Bradford-based assay with high sensitivity and reproducibility and a simple protocol to quantify protein extracted from a Martian soil simulant. Methods for protein spiking, extraction, and recovery were optimized, using protein standards and bacterial proteins as representative models. The proposed method achieved high sensitivity and reproducibility. Taking into account that life remains could exist on the surface of Mars, which is subjected to UV radiation, a simulation of UV exposure was performed on a spiked soil simulant. UV radiation degraded the protein spike, thus highlighting the importance of searching for the remaining signal from degraded proteins. Finally, the applicability of the method was explored in relation to the storage of the reagent which was stable even up to 12 months, thus making its application possible for future planetary exploration missions.
Collapse
Affiliation(s)
- Yongda Li
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland
| | - David A Collins
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland
| | | |
Collapse
|
8
|
Severino R, Moreno-Paz M, Puente-Sánchez F, Sánchez-García L, Risso VA, Sanchez-Ruiz JM, Cabrol N, Parro V. Immunoanalytical Approach for Detecting and Identifying Ancestral Peptide Biomarkers in Early Earth Analogue Environments. Anal Chem 2023; 95:5323-5330. [PMID: 36926836 PMCID: PMC10061368 DOI: 10.1021/acs.analchem.2c05386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023]
Abstract
Several mass spectrometry and spectroscopic techniques have been used in the search for molecular biomarkers on Mars. A major constraint is their capability to detect and identify large and complex compounds such as peptides or other biopolymers. Multiplex immunoassays can detect these compounds, but antibodies must be produced for a large number of sequence-dependent molecular targets. Ancestral Sequence Reconstruction (ASR) followed by protein "resurrection" in the lab can help to narrow the selection of targets. Herein, we propose an immunoanalytical method to identify ancient and universally conserved protein/peptide sequences as targets for identifying ancestral biomarkers in nature. We have developed, tested, and validated this approach by producing antibodies to eight previously described ancestral resurrected proteins (three β-lactamases, three thioredoxins, one Elongation Factor Tu, and one RuBisCO, all of them theoretically dated as Precambrian), and used them as a proxy to search for any potential feature of them that could be present in current natural environments. By fluorescent sandwich microarray immunoassays (FSMI), we have detected positive immunoreactions with antibodies to the oldest β-lactamase and thioredoxin proteins (ca. 4 Ga) in samples from a hydrothermal environment. Fine epitope mapping and inhibitory immunoassays allowed the identification of well-conserved epitope peptide sequences that resulted from ASR and were present in the sample. We corroborated these results by metagenomic sequencing and found several genes encoding analogue proteins with significant matches to the peptide epitopes identified with the antibodies. The results demonstrated that peptides inferred from ASR studies have true counterpart analogues in Nature, which validates and strengthens the well-known ASR/protein resurrection technique and our immunoanalytical approach for investigating ancient environments and metabolisms on Earth and elsewhere.
Collapse
Affiliation(s)
- Rita Severino
- Centro
de Astrobiología (CAB), CSIC-INTA, 28850 Torrejón de Ardoz, Madrid, Spain
- PhD
Program in Space Research and Astrobiology, University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid, Spain
| | - Mercedes Moreno-Paz
- Centro
de Astrobiología (CAB), CSIC-INTA, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Fernando Puente-Sánchez
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), 75651 Uppsala, Sweden
| | - Laura Sánchez-García
- Centro
de Astrobiología (CAB), CSIC-INTA, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Valeria A. Risso
- Departamento
de Química Física, Facultad de Ciencias, Unidad de Excelencia
de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Jose M. Sanchez-Ruiz
- Departamento
de Química Física, Facultad de Ciencias, Unidad de Excelencia
de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Nathalie Cabrol
- Carl
Sagan Center for the Study of Life in the Universe, SETI Institute, Mountain
View, California 94043, United States
| | - Victor Parro
- Centro
de Astrobiología (CAB), CSIC-INTA, 28850 Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
9
|
Van Volkenburg T, Benzing JS, Craft KL, Ohiri K, Kilhefner A, Irons K, Bradburne C. Microfluidic Chromatography for Enhanced Amino Acid Detection at Ocean Worlds. ASTROBIOLOGY 2022; 22:1116-1128. [PMID: 35984944 PMCID: PMC9508454 DOI: 10.1089/ast.2021.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Increasing interest in the detection of biogenic signatures, such as amino acids, on icy moons and bodies within our solar system has led to the development of compact in situ instruments. Given the expected dilute biosignatures and high salinities of these extreme environments, purification of icy samples before analysis enables increased detection sensitivity. Herein, we outline a novel compact cation exchange method to desalinate proteinogenic amino acids in solution, independent of the type and concentration of salts in the sample. Using a modular microfluidic device, initial experiments explored operational limits of binding capacity with phenylalanine and three model cations, Na+, Mg2+, and Ca2+. Phenylalanine recovery (94-17%) with reduced conductivity (30-200 times) was seen at high salt-to-amino-acid ratios between 25:1 and 500:1. Later experiments tested competition between mixtures of 17 amino acids and other chemistries present in a terrestrial ocean sample. Recoveries ranged from 11% to 85% depending on side chain chemistry and cation competition, with concentration shown for select high affinity amino acids. This work outlines a nondestructive amino acid purification device capable of coupling to multiple downstream analytical techniques for improved characterization of icy samples at remote ocean worlds.
Collapse
Affiliation(s)
| | | | - Kathleen L. Craft
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Korine Ohiri
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Ashley Kilhefner
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Kristen Irons
- University of North Carolina at Chapel Hill College of Arts and Sciences, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
10
|
Barge LM, Rodriguez LE, Weber JM, Theiling BP. Determining the "Biosignature Threshold" for Life Detection on Biotic, Abiotic, or Prebiotic Worlds. ASTROBIOLOGY 2022; 22:481-493. [PMID: 34898272 DOI: 10.1089/ast.2021.0079] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of prebiotic chemistry has demonstrated that complex organic chemical systems that exhibit various life-like properties can be produced abiotically in the laboratory. Understanding these chemical systems is important for astrobiology and life detection since we do not know the extent to which prebiotic chemistry might exist or have existed on other worlds. Nor do we know what signatures are diagnostic of an extant or "failed" prebiotic system. On Earth, biology has suppressed most abiotic organic chemistry and overprints geologic records of prebiotic chemistry; therefore, it is difficult to validate whether chemical signatures from future planetary missions are remnant or extant prebiotic systems. The "biosignature threshold" between whether a chemical signature is more likely to be produced by abiotic versus biotic chemistry on a given world could vary significantly, depending on the particular environment, and could change over time, especially if life were to emerge and diversify on that world. To interpret organic signatures detected during a planetary mission, we advocate for (1) gaining a more complete understanding of prebiotic/abiotic chemical possibilities in diverse planetary environments and (2) involving experimental prebiotic samples as analogues when generating comparison libraries for "life-detection" mission instruments.
Collapse
Affiliation(s)
- Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
11
|
Extant Earthly Microbial Mats and Microbialites as Models for Exploration of Life in Extraterrestrial Mat Worlds. Life (Basel) 2021; 11:life11090883. [PMID: 34575032 PMCID: PMC8468739 DOI: 10.3390/life11090883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
As we expand the search for life beyond Earth, a water-dominated planet, we turn our eyes to other aquatic worlds. Microbial life found in Earth's many extreme habitats are considered useful analogs to life forms we are likely to find in extraterrestrial bodies of water. Modern-day benthic microbial mats inhabiting the low-oxygen, high-sulfur submerged sinkholes of temperate Lake Huron (Michigan, USA) and microbialites inhabiting the shallow, high-carbonate waters of subtropical Laguna Bacalar (Yucatan Peninsula, Mexico) serve as potential working models for exploration of extraterrestrial life. In Lake Huron, delicate mats comprising motile filaments of purple-pigmented cyanobacteria capable of oxygenic and anoxygenic photosynthesis and pigment-free chemosynthetic sulfur-oxidizing bacteria lie atop soft, organic-rich sediments. In Laguna Bacalar, lithification by cyanobacteria forms massive carbonate reef structures along the shoreline. Herein, we document studies of these two distinct earthly microbial mat ecosystems and ponder how similar or modified methods of study (e.g., robotics) would be applicable to prospective mat worlds in other planets and their moons (e.g., subsurface Mars and under-ice oceans of Europa). Further studies of modern-day microbial mat and microbialite ecosystems can add to the knowledge of Earth's biodiversity and guide the search for life in extraterrestrial hydrospheres.
Collapse
|
12
|
The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis. Life (Basel) 2021; 11:life11090872. [PMID: 34575021 PMCID: PMC8467930 DOI: 10.3390/life11090872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
In this paper the hypothesis that prions and prion-like molecules could have initiated the chemical evolutionary process which led to the eventual emergence of life is reappraised. The prions first hypothesis is a specific application of the protein-first hypothesis which asserts that protein-based chemical evolution preceded the evolution of genetic encoding processes. This genetics-first hypothesis asserts that an “RNA-world era” came before protein-based chemical evolution and rests on a singular premise that molecules such as RNA, acetyl-CoA, and NAD are relics of a long line of chemical evolutionary processes preceding the Last Universal Common Ancestor (LUCA). Nevertheless, we assert that prions and prion-like molecules may also be relics of chemical evolutionary processes preceding LUCA. To support this assertion is the observation that prions and prion-like molecules are involved in a plethora of activities in contemporary biology in both complex (eukaryotes) and primitive life forms. Furthermore, a literature survey reveals that small RNA virus genomes harbor information about prions (and amyloids). If, as has been presumed by proponents of the genetics-first hypotheses, small viruses were present during an RNA world era and were involved in some of the earliest evolutionary processes, this places prions and prion-like molecules potentially at the heart of the chemical evolutionary process whose eventual outcome was life. We deliberate on the case for prions and prion-like molecules as the frontier molecules at the dawn of evolution of living systems.
Collapse
|
13
|
Perl SM, Celestian AJ, Cockell CS, Corsetti FA, Barge LM, Bottjer D, Filiberto J, Baxter BK, Kanik I, Potter-McIntyre S, Weber JM, Rodriguez LE, Melwani Daswani M. A Proposed Geobiology-Driven Nomenclature for Astrobiological In Situ Observations and Sample Analyses. ASTROBIOLOGY 2021; 21:954-967. [PMID: 34357788 PMCID: PMC8403179 DOI: 10.1089/ast.2020.2318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As the exploration of Mars and other worlds for signs of life has increased, the need for a common nomenclature and consensus has become significantly important for proper identification of nonterrestrial/non-Earth biology, biogenic structures, and chemical processes generated from biological processes. The fact that Earth is our single data point for all life, diversity, and evolution means that there is an inherent bias toward life as we know it through our own planet's history. The search for life "as we don't know it" then brings this bias forward to decision-making regarding mission instruments and payloads. Understandably, this leads to several top-level scientific, theoretical, and philosophical questions regarding the definition of life and what it means for future life detection missions. How can we decide on how and where to detect known and unknown signs of life with a single biased data point? What features could act as universal biosignatures that support Darwinian evolution in the geological context of nonterrestrial time lines? The purpose of this article is to generate an improved nomenclature for terrestrial features that have mineral/microbial interactions within structures and to confirm which features can only exist from life (biotic), features that are modified by biological processes (biogenic), features that life does not affect (abiotic), and properties that can exist or not regardless of the presence of biology (abiogenic). These four categories are critical in understanding and deciphering future returned samples from Mars, signs of potential extinct/ancient and extant life on Mars, and in situ analyses from ocean worlds to distinguish and separate what physical structures and chemical patterns are due to life and which are not. Moreover, we discuss hypothetical detection and preservation environments for extant and extinct life, respectively. These proposed environments will take into account independent active and ancient in situ detection prospects by using previous planetary exploration studies and discuss the geobiological implications within an astrobiological context.
Collapse
Affiliation(s)
- Scott M. Perl
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Mineral Sciences, Natural History Museum of Los Angeles County, Los Angeles, California, USA
- Blue Marble Space Institute for Science, Seattle, Washington, USA
- Address correspondence to: Scott M. Perl, NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, +USA
| | - Aaron J. Celestian
- Mineral Sciences, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Charles S. Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland
| | - Frank A. Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Laura M. Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Blue Marble Space Institute for Science, Seattle, Washington, USA
| | - David Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | | | - Bonnie K. Baxter
- Great Salt Lake Institute, Westminster College, Salt Lake City, Utah, USA
| | - Isik Kanik
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Sally Potter-McIntyre
- School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Jessica M. Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura E. Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Mohit Melwani Daswani
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
14
|
Mudge MC, Nunn BL, Firth E, Ewert M, Hales K, Fondrie WE, Noble WS, Toner J, Light B, Junge KA. Subzero, saline incubations of Colwellia psychrerythraea reveal strategies and biomarkers for sustained life in extreme icy environments. Environ Microbiol 2021; 23:3840-3866. [PMID: 33760340 PMCID: PMC8475265 DOI: 10.1111/1462-2920.15485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/22/2021] [Indexed: 11/26/2022]
Abstract
Colwellia psychrerythraea is a marine psychrophilic bacterium known for its remarkable ability to maintain activity during long-term exposure to extreme subzero temperatures and correspondingly high salinities in sea ice. These microorganisms must have adaptations to both high salinity and low temperature to survive, be metabolically active, or grow in the ice. Here, we report on an experimental design that allowed us to monitor culturability, cell abundance, activity and proteomic signatures of C. psychrerythraea strain 34H (Cp34H) in subzero brines and supercooled sea water through long-term incubations under eight conditions with varying subzero temperatures, salinities and nutrient additions. Shotgun proteomics found novel metabolic strategies used to maintain culturability in response to each independent experimental variable, particularly in pathways regulating carbon, nitrogen and fatty acid metabolism. Statistical analysis of abundances of proteins uniquely identified in isolated conditions provide metabolism-specific protein biosignatures indicative of growth or survival in either increased salinity, decreased temperature, or nutrient limitation. Additionally, to aid in the search for extant life on other icy worlds, analysis of detected short peptides in -10°C incubations after 4 months identified over 500 potential biosignatures that could indicate the presence of terrestrial-like cold-active or halophilic metabolisms on other icy worlds.
Collapse
Affiliation(s)
- Miranda C. Mudge
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA
- Astrobiology Program, University of Washington, Seattle, WA
| | - Erin Firth
- Applied Physics Lab, Polar Science Center, University of Washington, Seattle, WA
| | - Marcela Ewert
- Applied Physics Lab, Polar Science Center, University of Washington, Seattle, WA
| | - Kianna Hales
- Department of Genome Sciences, University of Washington, Seattle, WA
| | | | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, WA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA
| | - Jonathan Toner
- Department of Earth and Space Sciences, University of Washington, Seattle, WA
| | - Bonnie Light
- Applied Physics Lab, Polar Science Center, University of Washington, Seattle, WA
| | - Karen A. Junge
- Applied Physics Lab, Polar Science Center, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Abstract
How did life begin on Earth? And is there life elsewhere in the Cosmos? Challenging questions, indeed. The series of conferences established by NoR CEL in 2013 addresses these very questions. This paper comprises a summary report of oral presentations that were delivered by NoR CEL’s network members during the 2018 Athens conference and, as such, disseminates the latest research which they have put forward. More in depth material can be found by consulting the contributors referenced papers. Overall, the outcome of this conspectus on the conference demonstrates a case for the existence of “probable chemistry” during the prebiotic epoch.
Collapse
|
16
|
Frenkel-Pinter M, Haynes JW, Mohyeldin AM, C M, Sargon AB, Petrov AS, Krishnamurthy R, Hud NV, Williams LD, Leman LJ. Mutually stabilizing interactions between proto-peptides and RNA. Nat Commun 2020; 11:3137. [PMID: 32561731 PMCID: PMC7305224 DOI: 10.1038/s41467-020-16891-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
The close synergy between peptides and nucleic acids in current biology is suggestive of a functional co-evolution between the two polymers. Here we show that cationic proto-peptides (depsipeptides and polyesters), either produced as mixtures from plausibly prebiotic dry-down reactions or synthetically prepared in pure form, can engage in direct interactions with RNA resulting in mutual stabilization. Cationic proto-peptides significantly increase the thermal stability of folded RNA structures. In turn, RNA increases the lifetime of a depsipeptide by >30-fold. Proto-peptides containing the proteinaceous amino acids Lys, Arg, or His adjacent to backbone ester bonds generally promote RNA duplex thermal stability to a greater magnitude than do analogous sequences containing non-proteinaceous residues. Our findings support a model in which tightly-intertwined biological dependencies of RNA and protein reflect a long co-evolutionary history that began with rudimentary, mutually-stabilizing interactions at early stages of polypeptide and nucleic acid co-existence.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jay W Haynes
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ahmad M Mohyeldin
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Martin C
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alyssa B Sargon
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anton S Petrov
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ramanarayanan Krishnamurthy
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nicholas V Hud
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Loren Dean Williams
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA. .,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA. .,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
17
|
Molecules to Microbes. SCI 2020. [DOI: 10.3390/sci2020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
How did life begin on Earth? And is there life elsewhere in the Cosmos? Challenging questions, indeed. The series of conferences established by NoR CEL in 2013, addresses these very same questions. The basis for this paper is the summary report of oral presentations that were delivered by NoR CEL’s network members during the 2018 Athens conference and, as such, disseminates the latest research which they have put forward. More in depth material can be found by consulting the contributors referenced papers. Overall, the outcome of this conspectus on the conference demonstrates a case for the existence of “probable chemistry” during the prebiotic epoch.
Collapse
|
18
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
19
|
Taubner RS, Baumann LMF, Bauersachs T, Clifford EL, Mähnert B, Reischl B, Seifert R, Peckmann J, Rittmann SKMR, Birgel D. Membrane Lipid Composition and Amino Acid Excretion Patterns of Methanothermococcus okinawensis Grown in the Presence of Inhibitors Detected in the Enceladian Plume. Life (Basel) 2019; 9:E85. [PMID: 31739502 PMCID: PMC6958431 DOI: 10.3390/life9040085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/05/2023] Open
Abstract
Lipids and amino acids are regarded as important biomarkers for the search for extraterrestrial life in the Solar System. Such biomarkers may be used to trace methanogenic life on other planets or moons in the Solar System, such as Saturn's icy moon Enceladus. However, little is known about the environmental conditions shaping the synthesis of lipids and amino acids. Here, we present the lipid production and amino acid excretion patterns of the methanogenic archaeon Methanothermococcus okinawensis after exposing it to different multivariate concentrations of the inhibitors ammonium, formaldehyde, and methanol present in the Enceladian plume. M. okinawensis shows different patterns of lipid and amino acids excretion, depending on the amount of these inhibitors in the growth medium. While methanol did not show a significant impact on growth, lipid or amino acid production rates, ammonium and formaldehyde strongly affected these parameters. These findings are important for understanding the eco-physiology of methanogens on Earth and have implications for the use of biomarkers as possible signs of extraterrestrial life for future space missions in the Solar System.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1010 Vienna, Austria; (R.-S.T.); (B.R.); (S.K.-M.R.R.)
| | - Lydia M. F. Baumann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| | - Thorsten Bauersachs
- Institute of Geosciences, Department of Organic Geochemistry, Christian-Albrechts-Universität, 24118 Kiel, Germany;
| | - Elisabeth L. Clifford
- Department of Limnology and Bio-Oceanography, Universität Wien, 1010 Vienna, Austria; (E.L.C.); (B.M.)
| | - Barbara Mähnert
- Department of Limnology and Bio-Oceanography, Universität Wien, 1010 Vienna, Austria; (E.L.C.); (B.M.)
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1010 Vienna, Austria; (R.-S.T.); (B.R.); (S.K.-M.R.R.)
| | - Richard Seifert
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| | - Jörn Peckmann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1010 Vienna, Austria; (R.-S.T.); (B.R.); (S.K.-M.R.R.)
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| |
Collapse
|
20
|
Georgiou CD, McKay CP, Quinn RC, Kalaitzopoulou E, Papadea P, Skipitari M. The Oxygen Release Instrument: Space Mission Reactive Oxygen Species Measurements for Habitability Characterization, Biosignature Preservation Potential Assessment, and Evaluation of Human Health Hazards. Life (Basel) 2019; 9:E70. [PMID: 31461989 PMCID: PMC6789740 DOI: 10.3390/life9030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 11/17/2022] Open
Abstract
We describe the design of an instrument, the OxR (for Oxygen Release), for the enzymatically specific and non-enzymatic detection and quantification of the reactive oxidant species (ROS), superoxide radicals (O2•-), and peroxides (O22-, e.g., H2O2) on the surface of Mars and Moon. The OxR instrument is designed to characterize planetary habitability, evaluate human health hazards, and identify sites with high biosignature preservation potential. The instrument can also be used for missions to the icy satellites of Saturn's Titan and Enceladus, and Jupiter's Europa. The principle of the OxR instrument is based on the conversion of (i) O2•- to O2 via its enzymatic dismutation (which also releases H2O2), and of (ii) H2O2 (free or released by the hydrolysis of peroxides and by the dismutation of O2•-) to O2 via enzymatic decomposition. At stages i and ii, released O2 is quantitatively detected by an O2 sensor and stoichiometrically converted to moles of O2•- and H2O2. A non-enzymatic alternative approach is also designed. These methods serve as the design basis for the construction of a new small-footprint instrument for specific oxidant detection. The minimum detection limit of the OxR instrument for O2•- and O22- in Mars, Lunar, and Titan regolith, and in Europa and Enceladus ice is projected to be 10 ppb. The methodology of the OxR instrument can be rapidly advanced to flight readiness by leveraging the Phoenix Wet Chemical Laboratory, or microfluidic sample processing technologies.
Collapse
Affiliation(s)
| | | | - Richard C Quinn
- SETI Institute, Carl Sagan Center, Mountain View, CA 94043, USA
| | | | | | | |
Collapse
|
21
|
Frenkel-Pinter M, Haynes JW, C M, Petrov AS, Burcar BT, Krishnamurthy R, Hud NV, Leman LJ, Williams LD. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc Natl Acad Sci U S A 2019; 116:16338-16346. [PMID: 31358633 PMCID: PMC6697887 DOI: 10.1073/pnas.1904849116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous long-standing questions in origins-of-life research center on the history of biopolymers. For example, how and why did nature select the polypeptide backbone and proteinaceous side chains? Depsipeptides, containing both ester and amide linkages, have been proposed as ancestors of polypeptides. In this paper, we investigate cationic depsipeptides that form under mild dry-down reactions. We compare the oligomerization of various cationic amino acids, including the cationic proteinaceous amino acids (lysine, Lys; arginine, Arg; and histidine, His), along with nonproteinaceous analogs of Lys harboring fewer methylene groups in their side chains. These analogs, which have been discussed as potential prebiotic alternatives to Lys, are ornithine, 2,4-diaminobutyric acid, and 2,3-diaminopropionic acid (Orn, Dab, and Dpr). We observe that the proteinaceous amino acids condense more extensively than these nonproteinaceous amino acids. Orn and Dab readily cyclize into lactams, while Dab and Dpr condense less efficiently. Furthermore, the proteinaceous amino acids exhibit more selective oligomerization through their α-amines relative to their side-chain groups. This selectivity results in predominantly linear depsipeptides in which the amino acids are α-amine-linked, analogous to today's proteins. These results suggest a chemical basis for the selection of Lys, Arg, and His over other cationic amino acids for incorporation into proto-proteins on the early Earth. Given that electrostatics are key elements of protein-RNA and protein-DNA interactions in extant life, we hypothesize that cationic side chains incorporated into proto-peptides, as reported in this study, served in a variety of functions with ancestral nucleic acid polymers in the early stages of life.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jay W Haynes
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Martin C
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anton S Petrov
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| | - Bradley T Burcar
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Ramanarayanan Krishnamurthy
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicholas V Hud
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Luke J Leman
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332;
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Loren Dean Williams
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332;
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
22
|
Abstract
How did life begin on Earth? And is there life elsewhere in the Cosmos? Challenging questions, indeed. The series of conferences established by NoR CEL in 2013, addresses these very same questions. The basis for this paper is the summary report of oral presentations that were delivered by NoR CEL’s network members during the 2018 Athens conference and, as such, disseminates the latest research which they have put forward. More in depth material can be found by consulting the contributors referenced papers. Overall, the outcome of this conspectus on the conference demonstrates a case for the existence of “probable chemistry” during the prebiotic epoch.
Collapse
|