1
|
Manea I, Casian M, Hosu-Stancioiu O, de-Los-Santos-Álvarez N, Lobo-Castañón MJ, Cristea C. A review on magnetic beads-based SELEX technologies: Applications from small to large target molecules. Anal Chim Acta 2024; 1297:342325. [PMID: 38438246 DOI: 10.1016/j.aca.2024.342325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Abstract
This review summarizes the stepwise strategy and key points for magnetic beads (MBs)-based aptamer selection which is suitable for isolating aptamers against small and large molecules via systematic evolution of ligands by exponential enrichment (SELEX). Particularities, if any, are discussed according to the target size. Examples targeting small molecules (<1000 Da) such as xenobiotics, toxins, pesticides, herbicides, illegal additives, hormones, and large targets such as proteins (biomarkers, pathogens) are discussed and presented in tabular formats. Of special interest are the latest advances in more efficient alternatives, which are based on novel instrumentation, materials or microelectronics, such as fluorescence MBs-SELEX or microfluidic chip system-assisted MBs-SELEX. Limitations and perspectives of MBs-SELEX are also reviewed. Taken together, this review aims to provide practical insights into MBs-SELEX technologies and their ability to screen multiple potential aptamers against targets from small to large molecules.
Collapse
Affiliation(s)
- Ioana Manea
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Magdolna Casian
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania; Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
| | - Oana Hosu-Stancioiu
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. de Roma s/n, 33011, Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. de Roma s/n, 33011, Oviedo, Spain
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Coussot G, Le Postollec A, Delbecq S, Dobrijevic M. Freeze-drying of few microliters of antibody formulations to implement 384-wells homogeneous instant assays. Anal Chim Acta 2023; 1277:341660. [PMID: 37604613 DOI: 10.1016/j.aca.2023.341660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
Enzyme-linked immunosorbent assay protocols have traditionally complex workflows with several intensive wash steps. Analytical tools with both shorter time-to-result and hands-on-time using smaller sample and assays reagents volumes are now investigated. In this context, fluorescence resonance energy transfer (FRET)-based assays are emerging as one of the most promising analytical tools in high-throughput screening (HTS). These immunoassays allow fast quantification of antigens at the nano-gram level in a final assay volume of only a few μL. We used a homogeneous time-resolved FRET (called HTRF) assay to develop a freeze-dried screening and ready-to-use format with only one rehydration step called "instant assay". To assure optimal performance of the developed homogeneous instant assay, we investigated the critical quality attributes by studying the functionality and stability of the critical reagents and fluorophores. The cyclic adenosine 3'-5'-monophosphate (cAMP) was selected as the antigen target. We tested various formulations (with different buffers, sugars, bulking reagents, surfactants and co-solvants) combined with a slow freezing and the use of an aluminium plate holder during the freeze-drying of few microliter of bioreagents. The optimized freeze-drying procedure permits to preserve more than 70% of Ab recognition properties. The developed off-the-shelf homogeneous FRET immunoassay allows direct and fast quantification of cAMP at a nanogram level.
Collapse
Affiliation(s)
- G Coussot
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 15 Avenue Charles Flahault, 34090, Montpellier, France.
| | - A Le Postollec
- Laboratoire d'astrophysique de Bordeaux (LAB), CNRS UMR 5804, Université de Bordeaux, B18N, allée Geoffroy Saint-Hilaire, 33615, Pessac, France
| | - S Delbecq
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090, Montpellier, France
| | - M Dobrijevic
- Laboratoire d'astrophysique de Bordeaux (LAB), CNRS UMR 5804, Université de Bordeaux, B18N, allée Geoffroy Saint-Hilaire, 33615, Pessac, France
| |
Collapse
|
3
|
Fairén AG, Gómez-Elvira J, Briones C, Prieto-Ballesteros O, Rodríguez-Manfredi JA, López Heredero R, Belenguer T, Moral AG, Moreno-Paz M, Parro V. The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons. ASTROBIOLOGY 2020; 20:1076-1096. [PMID: 32856927 PMCID: PMC7116096 DOI: 10.1089/ast.2019.2167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca New York, USA
| | - Javier Gómez-Elvira
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | | | | | - Raquel López Heredero
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Tomás Belenguer
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Andoni G. Moral
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | - Víctor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| |
Collapse
|
4
|
Cottin H, Rettberg P. EXPOSE-R2 on the International Space Station (2014-2016): Results from the PSS and BOSS Astrobiology Experiments. ASTROBIOLOGY 2019; 19:975-978. [PMID: 31373529 DOI: 10.1089/ast.2019.0625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
EXPOSE facilities were ESA multiuser facilities mounted outside the International Space Station for astrobiology experiments. Between 2008 and 2016, three series of experiments were conducted involving chemical and biological samples to test their resistance and evolution in the space environment in low Earth orbit. In this Astrobiology special collection, results from two experiments of the EXPOSE-R2 campaign (2014-2016) are presented: Biofilm Organisms Surfing Space (BOSS) relating to biology and Photochemistry on the Space Station (PSS) dealing with astrochemistry.
Collapse
Affiliation(s)
- Hervé Cottin
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Petra Rettberg
- 2German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Cologne, Germany
| |
Collapse
|