1
|
Inskeep WP, Jay ZJ, McKay LJ, Dlakić M. Respiratory processes of early-evolved hyperthermophiles in sulfidic and low-oxygen geothermal microbial communities. Nat Commun 2025; 16:277. [PMID: 39746973 PMCID: PMC11696919 DOI: 10.1038/s41467-024-55079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Thermophilic microbial communities growing in low-oxygen environments often contain early-evolved archaea and bacteria, which hold clues regarding mechanisms of cellular respiration relevant to early life. Here, we conducted replicate metagenomic, metatranscriptomic, microscopic, and geochemical analyses on two hyperthermophilic (82-84 °C) filamentous microbial communities (Conch and Octopus Springs, Yellowstone National Park, WY) to understand the role of oxygen, sulfur, and arsenic in energy conservation and community composition. We report that hyperthermophiles within the Aquificota (Thermocrinis), Pyropristinus (Caldipriscus), and Thermoproteota (Pyrobaculum) are abundant in both communities; however, higher oxygen results in a greater diversity of aerobic heterotrophs. Metatranscriptomics revealed major shifts in respiratory pathways of keystone chemolithotrophs due to differences in oxygen versus sulfide. Specifically, early-evolved hyperthermophiles express high levels of high-affinity cytochrome bd and CydAA' oxidases in suboxic sulfidic environments and low-affinity heme Cu oxidases under microaerobic conditions. These energy-conservation mechanisms using cytochrome oxidases in high-temperature, low-oxygen habitats likely played a crucial role in the early evolution of microbial life.
Collapse
Affiliation(s)
- William P Inskeep
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Zackary J Jay
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Luke J McKay
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
- LanzaTech, Skokie, IL, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
2
|
Rowe L, Dowd SE, Davidson K, Kovarik C, VanAken M, Jarabek A, Taylor C. Comparing microbial populations from diverse hydrothermal features in Yellowstone National Park: hot springs and mud volcanoes. Front Microbiol 2024; 15:1409664. [PMID: 38993494 PMCID: PMC11236564 DOI: 10.3389/fmicb.2024.1409664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Geothermal features, such as hot springs and mud volcanoes, host diverse microbial life, including many extremophile organisms. The physicochemical parameters of the geothermal feature, such as temperature, pH, and heavy metal concentration, can influence the alpha and beta diversity of microbial life in these environments, as can spatiotemporal differences between sites and sampling. In this study, water and sediment samples were collected and analyzed from eight geothermal sites at Yellowstone National Park, including six hot springs, a mud volcano, and an acidic lake within the same week in July 2019, and these geothermal sites varied greatly in their temperature, pH, and chemical composition. All samples were processed and analyzed with the same methodology and taxonomic profiles and alpha and beta diversity metrics determined with 16S rRNA sequencing. These microbial diversity results were then analyzed with respect to pH, temperature, and chemical composition of the geothermal features. Results indicated that predominant microbial species varied greatly depending on the physicochemical composition of the geothermal site, with decreases in pH and increases in dissolved heavy metals in the water corresponding to decreases in alpha diversity, especially in the sediment samples. Similarly, sites with acidic pH values had more similar microbial populations (beta diversity) to one another than to relatively neutral or alkaline pH geothermal sites. This study suggests that pH and/or heavy metal concentration is a more important driver for microbial diversity and population profile than the temperature for these sites and is also the first reported microbial diversity study for multiple geothermal sites in Yellowstone National Park, including the relatively new mud volcano Black Dragon's Caldron, which erupted in 1948.
Collapse
Affiliation(s)
- Laura Rowe
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, United States
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States
| | - Scot E. Dowd
- Molecular Research LP (MR DNA Lab), Shallowater, TX, United States
| | - Kelly Davidson
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States
| | - Claire Kovarik
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States
| | - Michayla VanAken
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States
| | - Alyssa Jarabek
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States
| | - Churro Taylor
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, United States
| |
Collapse
|
3
|
Power JF, Carere CR, Welford HE, Hudson DT, Lee KC, Moreau JW, Ettema TJG, Reysenbach AL, Lee CK, Colman DR, Boyd ES, Morgan XC, McDonald IR, Craig Cary S, Stott MB. A genus in the bacterial phylum Aquificota appears to be endemic to Aotearoa-New Zealand. Nat Commun 2024; 15:179. [PMID: 38167814 PMCID: PMC10762115 DOI: 10.1038/s41467-023-43960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Allopatric speciation has been difficult to examine among microorganisms, with prior reports of endemism restricted to sub-genus level taxa. Previous microbial community analysis via 16S rRNA gene sequencing of 925 geothermal springs from the Taupō Volcanic Zone (TVZ), Aotearoa-New Zealand, revealed widespread distribution and abundance of a single bacterial genus across 686 of these ecosystems (pH 1.2-9.6 and 17.4-99.8 °C). Here, we present evidence to suggest that this genus, Venenivibrio (phylum Aquificota), is endemic to Aotearoa-New Zealand. A specific environmental niche that increases habitat isolation was identified, with maximal read abundance of Venenivibrio occurring at pH 4-6, 50-70 °C, and low oxidation-reduction potentials. This was further highlighted by genomic and culture-based analyses of the only characterised species for the genus, Venenivibrio stagnispumantis CP.B2T, which confirmed a chemolithoautotrophic metabolism dependent on hydrogen oxidation. While similarity between Venenivibrio populations illustrated that dispersal is not limited across the TVZ, extensive amplicon, metagenomic, and phylogenomic analyses of global microbial communities from DNA sequence databases indicates Venenivibrio is geographically restricted to the Aotearoa-New Zealand archipelago. We conclude that geographic isolation, complemented by physicochemical constraints, has resulted in the establishment of an endemic bacterial genus.
Collapse
Affiliation(s)
- Jean F Power
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Carlo R Carere
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Holly E Welford
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Daniel T Hudson
- Te Tari Moromoroiti me te Ārai Mate | Department of Microbiology and Immunology, Te Whare Wānanga o Ōtākou | University of Otago, Dunedin, 9054, Aotearoa New Zealand
| | - Kevin C Lee
- Te Kura Pūtaiao | School of Science, Te Wānanga Aronui o Tāmaki Makau Rau | Auckland University of Technology, Auckland, 1010, Aotearoa New Zealand
| | - John W Moreau
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8RZ, UK
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, the Netherlands
| | | | - Charles K Lee
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Xochitl C Morgan
- Te Tari Moromoroiti me te Ārai Mate | Department of Microbiology and Immunology, Te Whare Wānanga o Ōtākou | University of Otago, Dunedin, 9054, Aotearoa New Zealand
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ian R McDonald
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - S Craig Cary
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand.
| | - Matthew B Stott
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand.
| |
Collapse
|
4
|
Dhami NK, Greenwood PF, Poropat SF, Tripp M, Elson A, Vijay H, Brosnan L, Holman AI, Campbell M, Hopper P, Smith L, Jian A, Grice K. Microbially mediated fossil concretions and their characterization by the latest methodologies: a review. Front Microbiol 2023; 14:1225411. [PMID: 37840715 PMCID: PMC10576451 DOI: 10.3389/fmicb.2023.1225411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023] Open
Abstract
The study of well-preserved organic matter (OM) within mineral concretions has provided key insights into depositional and environmental conditions in deep time. Concretions of varied compositions, including carbonate, phosphate, and iron-based minerals, have been found to host exceptionally preserved fossils. Organic geochemical characterization of concretion-encapsulated OM promises valuable new information of fossil preservation, paleoenvironments, and even direct taxonomic information to further illuminate the evolutionary dynamics of our planet and its biota. Full exploitation of this largely untapped geochemical archive, however, requires a sophisticated understanding of the prevalence, formation controls and OM sequestration properties of mineral concretions. Past research has led to the proposal of different models of concretion formation and OM preservation. Nevertheless, the formation mechanisms and controls on OM preservation in concretions remain poorly understood. Here we provide a detailed review of the main types of concretions and formation pathways with a focus on the role of microbes and their metabolic activities. In addition, we provide a comprehensive account of organic geochemical, and complimentary inorganic geochemical, morphological, microbial and paleontological, analytical methods, including recent advancements, relevant to the characterization of concretions and sequestered OM. The application and outcome of several early organic geochemical studies of concretion-impregnated OM are included to demonstrate how this underexploited geo-biological record can provide new insights into the Earth's evolutionary record. This paper also attempts to shed light on the current status of this research and major challenges that lie ahead in the further application of geo-paleo-microbial and organic geochemical research of concretions and their host fossils. Recent efforts to bridge the knowledge and communication gaps in this multidisciplinary research area are also discussed, with particular emphasis on research with significance for interpreting the molecular record in extraordinarily preserved fossils.
Collapse
Affiliation(s)
- Navdeep K. Dhami
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Paul F. Greenwood
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Stephen F. Poropat
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Madison Tripp
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Amy Elson
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Hridya Vijay
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Luke Brosnan
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Alex I. Holman
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Matthew Campbell
- The Trace and Environmental DNA lab (trEND), School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Peter Hopper
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Lisa Smith
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Andrew Jian
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Kliti Grice
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| |
Collapse
|
5
|
Taxonomic Diversity of the Microbial Biofilms Collected along the Thermal Streams on Kunashir Island. ECOLOGIES 2023. [DOI: 10.3390/ecologies4010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Hot springs are known as highly adverse extreme environments where thermophilic and hyperthermophilic microorganisms can survive. We describe taxonomic diversity of several microbial biofilms collected along water temperature gradient in hot streams in the aquatic system of the Stolbovskie hot springs on Kunashir Island, Kurils, Russia. The taxonomic composition of the studied microbial communities was assessed by the 16S rRNA gene metabarcoding for bacteria and archaea, and by the 18S rRNA gene metabarcoding for protists. Richness and diversity of bacteria in the geothermal microbial communities decreased with the increase of temperature, while for archaea, the tendency was the opposite. Ciliophora was the most represented taxon of protists. The biofilms of various kinds that we found in a very local area of the geothermal system were different from each other by taxonomic composition, and the level of their taxonomic diversity was significantly influenced by water temperature.
Collapse
|
6
|
Nagar S, Talwar C, Motelica-Heino M, Richnow HH, Shakarad M, Lal R, Negi RK. Microbial Ecology of Sulfur Biogeochemical Cycling at a Mesothermal Hot Spring Atop Northern Himalayas, India. Front Microbiol 2022; 13:848010. [PMID: 35495730 PMCID: PMC9044081 DOI: 10.3389/fmicb.2022.848010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sulfur related prokaryotes residing in hot spring present good opportunity for exploring the limitless possibilities of integral ecosystem processes. Metagenomic analysis further expands the phylogenetic breadth of these extraordinary sulfur (S) metabolizing microorganisms as well as their complex metabolic networks and syntrophic interactions in environmental biosystems. Through this study, we explored and expanded the microbial genetic repertoire with focus on S cycling genes through metagenomic analysis of S contaminated hot spring, located at the Northern Himalayas. The analysis revealed rich diversity of microbial consortia with established roles in S cycling such as Pseudomonas, Thioalkalivibrio, Desulfovibrio, and Desulfobulbaceae (Proteobacteria). The major gene families inferred to be abundant across microbial mat, sediment, and water were assigned to Proteobacteria as reflected from the reads per kilobase (RPKs) categorized into translation and ribosomal structure and biogenesis. An analysis of sequence similarity showed conserved pattern of both dsrAB genes (n = 178) retrieved from all metagenomes while other S disproportionation proteins were diverged due to different structural and chemical substrates. The diversity of S oxidizing bacteria (SOB) and sulfate reducing bacteria (SRB) with conserved (r)dsrAB suggests for it to be an important adaptation for microbial fitness at this site. Here, (i) the oxidative and reductive dsr evolutionary time-scale phylogeny proved that the earliest (but not the first) dsrAB proteins belong to anaerobic Thiobacillus with other (rdsr) oxidizers, also we confirm that (ii) SRBs belongs to δ-Proteobacteria occurring independent lateral gene transfer (LGT) of dsr genes to different and few novel lineages. Further, the structural prediction of unassigned DsrAB proteins confirmed their relatedness with species of Desulfovibrio (TM score = 0.86, 0.98, 0.96) and Archaeoglobus fulgidus (TM score = 0.97, 0.98). We proposed that the genetic repertoire might provide the basis of studying time-scale evolution and horizontal gene transfer of these genes in biogeochemical S cycling.
Collapse
Affiliation(s)
- Shekhar Nagar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Chandni Talwar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Mikael Motelica-Heino
- UMR 7327, Centre National de la Recherche Scientifique, Institut des Sciences de la Terre D'Orleans (ISTO), Université d'Orleans-Brgm, Orleans, France
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Mallikarjun Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| | - Rup Lal
- NASI Senior Scientist Platinum Jubilee Fellow, The Energy and Resources Institute, New Delhi, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
McKay LJ, Nigro OD, Dlakić M, Luttrell KM, Rusch DB, Fields MW, Inskeep WP. Sulfur cycling and host-virus interactions in Aquificales-dominated biofilms from Yellowstone's hottest ecosystems. THE ISME JOURNAL 2022; 16:842-855. [PMID: 34650231 PMCID: PMC8857204 DOI: 10.1038/s41396-021-01132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
Modern linkages among magmatic, geochemical, and geobiological processes provide clues about the importance of thermophiles in the origin of biogeochemical cycles. The aim of this study was to identify the primary chemoautotrophs and host-virus interactions involved in microbial colonization and biogeochemical cycling at sublacustrine, vapor-dominated vents that represent the hottest measured ecosystems in Yellowstone National Park (~140 °C). Filamentous microbial communities exposed to extreme thermal and geochemical gradients were sampled using a remotely operated vehicle and subjected to random metagenome sequencing and microscopic analyses. Sulfurihydrogenibium (phylum Aquificae) was the predominant lineage (up to 84% relative abundance) detected at vents that discharged high levels of dissolved H2, H2S, and CO2. Metabolic analyses indicated carbon fixation by Sulfurihydrogenibium spp. was powered by the oxidation of reduced sulfur and H2, which provides organic carbon for heterotrophic community members. Highly variable Sulfurihydrogenibium genomes suggested the importance of intra-population diversity under extreme environmental and viral pressures. Numerous lytic viruses (primarily unclassified taxa) were associated with diverse archaea and bacteria in the vent community. Five circular dsDNA uncultivated virus genomes (UViGs) of ~40 kbp length were linked to the Sulfurihydrogenibium metagenome-assembled genome (MAG) by CRISPR spacer matches. Four UViGs contained consistent genome architecture and formed a monophyletic cluster with the recently proposed Pyrovirus genus within the Caudovirales. Sulfurihydrogenibium spp. also contained CRISPR arrays linked to plasmid DNA with genes for a novel type IV filament system and a highly expressed β-barrel porin. A diverse suite of transcribed secretion systems was consistent with direct microscopic analyses, which revealed an extensive extracellular matrix likely critical to community structure and function. We hypothesize these attributes are fundamental to the establishment and survival of microbial communities in highly turbulent, extreme-gradient environments.
Collapse
Affiliation(s)
- Luke J. McKay
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Olivia D. Nigro
- grid.256872.c0000 0000 8741 0387Department of Natural Science, Hawaii Pacific University, Honolulu, HI 96813 USA
| | - Mensur Dlakić
- grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - Karen M. Luttrell
- grid.64337.350000 0001 0662 7451Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Douglas B. Rusch
- grid.411377.70000 0001 0790 959XCenter for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405 USA
| | - Matthew W. Fields
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - William P. Inskeep
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
8
|
Travertine crystal growth ripples record the hydraulic history of ancient Rome's Anio Novus aqueduct. Sci Rep 2022; 12:1239. [PMID: 35075188 PMCID: PMC8786873 DOI: 10.1038/s41598-022-05158-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 01/07/2022] [Indexed: 01/01/2023] Open
Abstract
Travertine crystal growth ripples are used to reconstruct the early hydraulic history of the Anio Novus aqueduct of ancient Rome. These crystalline morphologies deposited within the aqueduct channel record the hydraulic history of gravity-driven turbulent flow at the time of Roman operation. The wavelength, amplitude, and steepness of these travertine crystal growth ripples indicate that large-scale sustained aqueduct flows scaled directly with the thickness of the aqueous viscous sublayer. Resulting critical shear Reynolds numbers are comparable with those reconstructed from heat/mass transfer crystalline ripples formed in other natural and engineered environments. This includes sediment transport in rivers, lakes, and oceans, chemical precipitation and dissolution in caves, and melting and freezing in ice. Where flow depth and perimeter could be reconstructed from the distribution and stratigraphy of the travertine within the Anio Novus aqueduct, flow velocity and rate have been quantified by deriving roughness-flow relationships that are independent of water temperature. More generally, under conditions of near-constant water temperature and kinematic viscosity within the Anio Novus aqueduct channel, the travertine crystal growth ripple wavelengths increased with decreasing flow velocity, indicating that systematic changes took place in flow rate during travertine deposition. This study establishes that travertine crystal growth ripples such as those preserved in the Anio Novus provide a sensitive record of past hydraulic conditions, which can be similarly reconstructed from travertine deposited in other ancient water conveyance and storage systems around the world.
Collapse
|
9
|
Moreras-Marti A, Fox-Powell M, Zerkle AL, Stueeken E, Gazquez F, Brand HEA, Galloway T, Purkamo L, Cousins CR. Volcanic controls on the microbial habitability of Mars-analogue hydrothermal environments. GEOBIOLOGY 2021; 19:489-509. [PMID: 34143931 DOI: 10.1111/gbi.12459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Due to their potential to support chemolithotrophic life, relic hydrothermal systems on Mars are a key target for astrobiological exploration. We analysed water and sediments at six geothermal pools from the rhyolitic Kerlingarfjöll and basaltic Kverkfjöll volcanoes in Iceland, to investigate the localised controls on the habitability of these systems in terms of microbial community function. Our results show that host lithology plays a minor role in pool geochemistry and authigenic mineralogy, with the system geochemistry primarily controlled by deep volcanic processes. We find that by dictating pool water pH and redox conditions, deep volcanic processes are the primary control on microbial community structure and function, with water input from the proximal glacier acting as a secondary control by regulating pool temperatures. Kerlingarfjöll pools have reduced, circum-neutral CO2 -rich waters with authigenic calcite-, pyrite- and kaolinite-bearing sediments. The dominant metabolisms inferred from community profiles obtained by 16S rRNA gene sequencing are methanogenesis, respiration of sulphate and sulphur (S0 ) oxidation. In contrast, Kverkfjöll pools have oxidised, acidic (pH < 3) waters with high concentrations of SO42- and high argillic alteration, resulting in Al-phyllosilicate-rich sediments. The prevailing metabolisms here are iron oxidation, sulphur oxidation and nitrification. Where analogous ice-fed hydrothermal systems existed on early Mars, similar volcanic processes would likely have controlled localised metabolic potential and thus habitability. Moreover, such systems offer several habitability advantages, including a localised source of metabolic redox pairs for chemolithotrophic microorganisms and accessible trace metals. Similar pools could have provided transient environments for life on Mars; when paired with surface or near-surface ice, these habitability niches could have persisted into the Amazonian. Additionally, they offer a confined site for biosignature formation and deposition that lends itself well to in situ robotic exploration.
Collapse
Affiliation(s)
- Arola Moreras-Marti
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Mark Fox-Powell
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
- AstrobiologyOU, The Open University, Milton Keynes, UK
| | - Aubrey L Zerkle
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Eva Stueeken
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Fernando Gazquez
- Water Resources and Environmental Geology Research Group, Department of Biology and Geology, University of Almería, Almería, Spain
| | | | - Toni Galloway
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | | | - Claire R Cousins
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
10
|
Sivaguru M, Saw JJ, Wilson EM, Lieske JC, Krambeck AE, Williams JC, Romero MF, Fouke KW, Curtis MW, Kear-Scott JL, Chia N, Fouke BW. Human kidney stones: a natural record of universal biomineralization. Nat Rev Urol 2021; 18:404-432. [PMID: 34031587 DOI: 10.1038/s41585-021-00469-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
GeoBioMed - a new transdisciplinary approach that integrates the fields of geology, biology and medicine - reveals that kidney stones composed of calcium-rich minerals precipitate from a continuum of repeated events of crystallization, dissolution and recrystallization that result from the same fundamental natural processes that have governed billions of years of biomineralization on Earth. This contextual change in our understanding of renal stone formation opens fundamentally new avenues of human kidney stone investigation that include analyses of crystalline structure and stratigraphy, diagenetic phase transitions, and paragenetic sequences across broad length scales from hundreds of nanometres to centimetres (five Powers of 10). This paradigm shift has also enabled the development of a new kidney stone classification scheme according to thermodynamic energetics and crystalline architecture. Evidence suggests that ≥50% of the total volume of individual stones have undergone repeated in vivo dissolution and recrystallization. Amorphous calcium phosphate and hydroxyapatite spherules coalesce to form planar concentric zoning and sector zones that indicate disequilibrium precipitation. In addition, calcium oxalate dihydrate and calcium oxalate monohydrate crystal aggregates exhibit high-frequency organic-matter-rich and mineral-rich nanolayering that is orders of magnitude higher than layering observed in analogous coral reef, Roman aqueduct, cave, deep subsurface and hot-spring deposits. This higher frequency nanolayering represents the unique microenvironment of the kidney in which potent crystallization promoters and inhibitors are working in opposition. These GeoBioMed insights identify previously unexplored strategies for development and testing of new clinical therapies for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jessica J Saw
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Elena M Wilson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amy E Krambeck
- Department of Urology, Mayo Clinic, Rochester, MN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James C Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael F Romero
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyle W Fouke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Matthew W Curtis
- Carl Zeiss Microscopy LLC, One North Broadway, White Plains, NY, USA
| | | | - Nicholas Chia
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bruce W Fouke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carl Zeiss Labs@Location Partner, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Saw JJ, Sivaguru M, Wilson EM, Dong Y, Sanford RA, Fields CJ, Cregger MA, Merkel AC, Bruce WJ, Weber JR, Lieske JC, Krambeck AE, Rivera ME, Large T, Lange D, Bhattacharjee AS, Romero MF, Chia N, Fouke BW. In Vivo Entombment of Bacteria and Fungi during Calcium Oxalate, Brushite, and Struvite Urolithiasis. KIDNEY360 2021; 2:298-311. [PMID: 35373025 PMCID: PMC8740987 DOI: 10.34067/kid.0006942020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 02/04/2023]
Abstract
Background Human kidney stones form via repeated events of mineral precipitation, partial dissolution, and reprecipitation, which are directly analogous to similar processes in other natural and manmade environments, where resident microbiomes strongly influence biomineralization. High-resolution microscopy and high-fidelity metagenomic (microscopy-to-omics) analyses, applicable to all forms of biomineralization, have been applied to assemble definitive evidence of in vivo microbiome entombment during urolithiasis. Methods Stone fragments were collected from a randomly chosen cohort of 20 patients using standard percutaneous nephrolithotomy (PCNL). Fourier transform infrared (FTIR) spectroscopy indicated that 18 of these patients were calcium oxalate (CaOx) stone formers, whereas one patient formed each formed brushite and struvite stones. This apportionment is consistent with global stone mineralogy distributions. Stone fragments from seven of these 20 patients (five CaOx, one brushite, and one struvite) were thin sectioned and analyzed using brightfield (BF), polarization (POL), confocal, super-resolution autofluorescence (SRAF), and Raman techniques. DNA from remaining fragments, grouped according to each of the 20 patients, were analyzed with amplicon sequencing of 16S rRNA gene sequences (V1-V3, V3-V5) and internal transcribed spacer (ITS1, ITS2) regions. Results Bulk-entombed DNA was sequenced from stone fragments in 11 of the 18 patients who formed CaOx stones, and the patients who formed brushite and struvite stones. These analyses confirmed the presence of an entombed low-diversity community of bacteria and fungi, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Aspergillus niger. Bacterial cells approximately 1 μm in diameter were also optically observed to be entombed and well preserved in amorphous hydroxyapatite spherules and fans of needle-like crystals of brushite and struvite. Conclusions These results indicate a microbiome is entombed during in vivo CaOx stone formation. Similar processes are implied for brushite and struvite stones. This evidence lays the groundwork for future in vitro and in vivo experimentation to determine how the microbiome may actively and/or passively influence kidney stone biomineralization.
Collapse
Affiliation(s)
- Jessica J. Saw
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Elena M. Wilson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yiran Dong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Robert A. Sanford
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Chris J. Fields
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Melissa A. Cregger
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Annette C. Merkel
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - William J. Bruce
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Joseph R. Weber
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - John C. Lieske
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Amy E. Krambeck
- Department of Urology, Mayo Clinic, Rochester, Minnesota
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marcelino E. Rivera
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy Large
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Jack Bell Research Centre, Vancouver, British Columbia, Canada
| | - Ananda S. Bhattacharjee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael F. Romero
- Department of Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Nicholas Chia
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | - Bruce W. Fouke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Evolution, Ecology and Behavior, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
12
|
Song N, Li Q, Zhou Y, Sun G, Pan L, Zhao X, Dong P, Zhao Y, Yang L, Huang Y. Carbonate biomineralization differentially induced by two psychrophilic Pseudomonas psychrophila strains isolated from an alpine travertine landform. RSC Adv 2021; 11:12885-12892. [PMID: 35423815 PMCID: PMC8697359 DOI: 10.1039/d1ra00578b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/19/2021] [Indexed: 11/21/2022] Open
Abstract
Besides geography and climate, biological factors play an important role in shaping travertine landforms, but the biochemical mechanisms of microbial processes in travertine formation have been rarely studied. Two psychrophilic bacterial strains, A20-18 and B21-3 of Pseudomonas psychrophila, isolated from travertine pools of Huanglong, a typical alpine travertine landform, were investigated for their roles in calcium carbonate mineralization, including the deposition process and products. X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy were used to characterize the crystal phase and morphology of CaCO3 precipitation. The results showed that there were no significant differences between the two strains in CaCO3 deposition rate. Extracellular polymeric substances (EPS)-free cells significantly inhibited calcification, compared with a control. Irregular crystals and polyhedral structures are common to all treatments using the two strains. These complex polycrystals were the result of the synergistic effect of homogeneous nucleation and heterogeneous nucleation. EPS and cells of strain B21-3 formed ring-like structures of calcium carbonate, which was possibly from the amphiphilic polymer forming a circular arrangement in water. These results are significant for understanding the microbial factor in Huanglong travertine deposition and providing new insights into the morphological control of the biomineralization mechanism at low temperatures. Calcium carbonate crystals induced by two Pseudomonas psychrophila strains and their organic compounds were studied.![]()
Collapse
Affiliation(s)
- Na Song
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Qiongfang Li
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
- Key Laboratory of Solid Waste Treatment and Resource Recycle
| | - Yi Zhou
- School of Agriculture, Food & Wine
- Waite Campus
- The University of Adelaide
- Urrbrae
- Australia
| | - Geng Sun
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ling Pan
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Xiaoxia Zhao
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Pengju Dong
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Yulian Zhao
- Life Science and Engineering College
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Lijun Yang
- School of Environment and Resource
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Yunbi Huang
- School of Environment and Resource
- Southwest University of Science and Technology
- Mianyang 621010
- China
| |
Collapse
|
13
|
Spatial Metagenomics of Three Geothermal Sites in Pisciarelli Hot Spring Focusing on the Biochemical Resources of the Microbial Consortia. Molecules 2020; 25:molecules25174023. [PMID: 32899230 PMCID: PMC7570011 DOI: 10.3390/molecules25174023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Terrestrial hot springs are of great interest to the general public and to scientists alike due to their unique and extreme conditions. These have been sought out by geochemists, astrobiologists, and microbiologists around the globe who are interested in their chemical properties, which provide a strong selective pressure on local microorganisms. Drivers of microbial community composition in these springs include temperature, pH, in-situ chemistry, and biogeography. Microbes in these communities have evolved strategies to thrive in these conditions by converting hot spring chemicals and organic matter into cellular energy. Following our previous metagenomic analysis of Pisciarelli hot springs (Naples, Italy), we report here the comparative metagenomic study of three novel sites, formed in Pisciarelli as result of recent geothermal activity. This study adds comprehensive information about phylogenetic diversity within Pisciarelli hot springs by peeking into possible mechanisms of adaptation to biogeochemical cycles, and high applicative potential of the entire set of genes involved in the carbohydrate metabolism in this environment (CAZome). This site is an excellent model for the study of biodiversity on Earth and biosignature identification, and for the study of the origin and limits of life.
Collapse
|