1
|
Aguzzi J, Cuadros J, Dartnell L, Costa C, Violino S, Canfora L, Danovaro R, Robinson NJ, Giovannelli D, Flögel S, Stefanni S, Chatzievangelou D, Marini S, Picardi G, Foing B. Marine Science Can Contribute to the Search for Extra-Terrestrial Life. Life (Basel) 2024; 14:676. [PMID: 38929660 PMCID: PMC11205085 DOI: 10.3390/life14060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Life on our planet likely evolved in the ocean, and thus exo-oceans are key habitats to search for extraterrestrial life. We conducted a data-driven bibliographic survey on the astrobiology literature to identify emerging research trends with marine science for future synergies in the exploration for extraterrestrial life in exo-oceans. Based on search queries, we identified 2592 published items since 1963. The current literature falls into three major groups of terms focusing on (1) the search for life on Mars, (2) astrobiology within our Solar System with reference to icy moons and their exo-oceans, and (3) astronomical and biological parameters for planetary habitability. We also identified that the most prominent research keywords form three key-groups focusing on (1) using terrestrial environments as proxies for Martian environments, centred on extremophiles and biosignatures, (2) habitable zones outside of "Goldilocks" orbital ranges, centred on ice planets, and (3) the atmosphere, magnetic field, and geology in relation to planets' habitable conditions, centred on water-based oceans.
Collapse
Affiliation(s)
- Jacopo Aguzzi
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
| | - Javier Cuadros
- Natural History Museum, Cromwell Road, London SW7 5D, UK;
| | - Lewis Dartnell
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London W1W 6UW, UK;
| | - Corrado Costa
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, 00015 Monterotondo, Italy; (C.C.); (S.V.)
| | - Simona Violino
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, 00015 Monterotondo, Italy; (C.C.); (S.V.)
| | - Loredana Canfora
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’economia Agraria—Centro di Ricerca Agricoltura e Ambiente, 00182 Roma, Italy;
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marcs (UNIVPM), 60131 Ancona, Italy;
| | - Nathan Jack Robinson
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy;
- National Research Council—Institute of Marine Biological Resources and Biotechnologies (CNR-IRBIM), 60125 Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA
- Marine Chemistry, Geochemistry Department—Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Sascha Flögel
- GEOMAR Helmholtz Centre for Ocean Research, 24106 Kiel, Germany;
| | - Sergio Stefanni
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
| | | | - Simone Marini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
- Institute of Marine Sciences, National Research Council of Italy (CNR-ISMAR), 19032 La Spezia, Italy
| | - Giacomo Picardi
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
| | - Bernard Foing
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081-1087, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
2
|
Vance SD, Craft KL, Shock E, Schmidt BE, Lunine J, Hand KP, McKinnon WB, Spiers EM, Chivers C, Lawrence JD, Wolfenbarger N, Leonard EJ, Robinson KJ, Styczinski MJ, Persaud DM, Steinbrügge G, Zolotov MY, Quick LC, Scully JEC, Becker TM, Howell SM, Clark RN, Dombard AJ, Glein CR, Mousis O, Sephton MA, Castillo-Rogez J, Nimmo F, McEwen AS, Gudipati MS, Jun I, Jia X, Postberg F, Soderlund KM, Elder CM. Investigating Europa's Habitability with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:81. [PMID: 38046182 PMCID: PMC10687213 DOI: 10.1007/s11214-023-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).
Collapse
Affiliation(s)
- Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kathleen L. Craft
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Everett Shock
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | - Britney E. Schmidt
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Jonathan Lunine
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Kevin P. Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - William B. McKinnon
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, Saint Louis, MO USA
| | - Elizabeth M. Spiers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Chase Chivers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Justin D. Lawrence
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Honeybee Robotics, Altadena, CA USA
| | - Natalie Wolfenbarger
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Erin J. Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | - Divya M. Persaud
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Mikhail Y. Zolotov
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | | | | | | | - Samuel M. Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - Andrew J. Dombard
- Dept. of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, USA
| | | | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France
| | - Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | | | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA USA
| | - Alfred S. McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Murthy S. Gudipati
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Insoo Jun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Xianzhe Jia
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA
| | - Frank Postberg
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
| | - Krista M. Soderlund
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Catherine M. Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
3
|
Cleaves HJ, Hystad G, Prabhu A, Wong ML, Cody GD, Economon S, Hazen RM. A robust, agnostic molecular biosignature based on machine learning. Proc Natl Acad Sci U S A 2023; 120:e2307149120. [PMID: 37748080 PMCID: PMC10576141 DOI: 10.1073/pnas.2307149120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/17/2023] [Indexed: 09/27/2023] Open
Abstract
The search for definitive biosignatures-unambiguous markers of past or present life-is a central goal of paleobiology and astrobiology. We used pyrolysis-gas chromatography coupled to mass spectrometry to analyze chemically disparate samples, including living cells, geologically processed fossil organic material, carbon-rich meteorites, and laboratory-synthesized organic compounds and mixtures. Data from each sample were employed as training and test subsets for machine-learning methods, which resulted in a model that can identify the biogenicity of both contemporary and ancient geologically processed samples with ~90% accuracy. These machine-learning methods do not rely on precise compound identification: Rather, the relational aspects of chromatographic and mass peaks provide the needed information, which underscores this method's utility for detecting alien biology.
Collapse
Affiliation(s)
- H. James Cleaves
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
- Earth Life Science Institute, Tokyo Institute of Technology, Tokyo152-8550, Japan
- Blue Marble Space Institute for Science, Seattle, WA98104
| | - Grethe Hystad
- Department of Mathematics and Statistics, Purdue University Northwest, Hammond, IN46323
| | - Anirudh Prabhu
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
| | - Michael L. Wong
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
- Sagan Fellow, NASA Hubble Fellowship Program, Space Telescope Science Institute, Baltimore, MD21218
| | - George D. Cody
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
| | - Sophia Economon
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD21218
| | - Robert M. Hazen
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC20015
| |
Collapse
|
4
|
Tan JSW, Salter TL, Watson JS, Waite JH, Sephton MA. Organic Biosignature Degradation in Hydrothermal and Serpentinizing Environments: Implications for Life Detection on Icy Moons and Mars. ASTROBIOLOGY 2023; 23:1045-1055. [PMID: 37506324 DOI: 10.1089/ast.2022.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Evidence of liquid water is a primary indicator of habitability on the icy moons in our outer solar system as well as on terrestrial planets such as Mars. If liquid water-containing environments host life, some of its organic remains can be fossilized and preserved as organic biosignatures. However, inorganic materials may also be present and water-assisted organic-inorganic reactions can transform the organic architecture of biological remains. Our understanding of the fate of these organic remains can be assisted by experimental simulations that monitor the chemical changes that occur in microbial organic matter due to the presence of water and minerals. We performed hydrothermal experiments at temperatures between 100°C and 300°C involving lipid-rich microbes and natural serpentinite mineral mixtures generated by the subaqueous hydrothermal alteration of ultramafic rock. The products reveal what the signals of life may look like when subjected to water-organic-inorganic reactions. Straight- and branched-chain lipids in unaltered samples are joined by cyclization and aromatization products in hydrothermally altered samples. Hydrothermal reactions produce distinct products that are not present in the starting materials, including small, single-ring, heteroatomic, and aromatic compounds such as indoles and phenols. Hydrothermal reactions in the presence of serpentinite minerals lead to significant reduction of these organic structures and their replacement by diketopiperazines (DKPs) and dihydropyrazines (DHPs), which may be compounds that are distinct to organic-inorganic reactions. Given that the precursors of DKPs and DHPs are normally lost during early diagenesis, the presence of these compounds can be an indicator of coexisting recent life and hydrothermal processing in the presence of minerals. However, laboratory experiments reveal that the formation and preservation of these compounds can only occur within a distinct temperature window. Our findings are relevant to life detection missions that aim to access hydrothermal and serpentinizing environments in the subsurfaces of icy moons and Mars.
Collapse
Affiliation(s)
- Jonathan S W Tan
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Tara L Salter
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - J Hunter Waite
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Mark A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Weber JM, Marlin TC, Prakash M, Teece BL, Dzurilla K, Barge LM. A Review on Hypothesized Metabolic Pathways on Europa and Enceladus: Space-Flight Detection Considerations. Life (Basel) 2023; 13:1726. [PMID: 37629583 PMCID: PMC10456045 DOI: 10.3390/life13081726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Enceladus and Europa, icy moons of Saturn and Jupiter, respectively, are believed to be habitable with liquid water oceans and therefore are of interest for future life detection missions and mission concepts. With the limited data from missions to these moons, many studies have sought to better constrain these conditions. With these constraints, researchers have, based on modeling and experimental studies, hypothesized a number of possible metabolisms that could exist on Europa and Enceladus if these worlds host life. The most often hypothesized metabolisms are methanogenesis for Enceladus and methane oxidation/sulfate reduction on Europa. Here, we outline, review, and compare the best estimated conditions of each moon's ocean. We then discuss the hypothetical metabolisms that have been suggested to be present on these moons, based on laboratory studies and Earth analogs. We also detail different detection methods that could be used to detect these hypothetical metabolic reactions and make recommendations for future research and considerations for future missions.
Collapse
Affiliation(s)
- Jessica M. Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA (B.L.T.); (K.D.); (L.M.B.)
| | | | | | | | | | | |
Collapse
|
6
|
Wan YY, Zhu YJ, Jiang L, Luo N. Multi-Temperatures Pyrolysis Gas Chromatography: A Rapid Method to Differentiate Microorganisms. Microorganisms 2022; 10:microorganisms10122333. [PMID: 36557587 PMCID: PMC9781292 DOI: 10.3390/microorganisms10122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The identification of microorganisms using single-temperatures pyrolysis gas chromatography (ST-PyGC) has limitations, for example, the risk of missing characteristic peaks that are essential to the chemotaxonomic interpretation. In this paper, we proposed a new multi-temperature PyGC (MT-PyGC) method as an alternative to ST-PyGC, without sacrificing its speed and quality. Six bacteria (three Gram-positive and three Gram-negative), one micro-fungus and one archaeon, representing microorganisms from different domains, were analyzed by MT-PyGC. It is found that MT pyrograms cover a more complete range of characteristic peaks than ST. Coupling with thermogravimetric analysis, chemotaxonomic information extracted from pyrograms by MT-PyGC have the potential for the differentiation of microorganisms from environments including deep subterranean reservoirs and biomass conversion/biofuel production.
Collapse
|
7
|
Salter TL, Watson JS, Waite JH, Sephton MA. Hydrothermal Processing of Microorganisms: Mass Spectral Signals of Degraded Biosignatures for Life Detection on Icy Moons. ACS EARTH & SPACE CHEMISTRY 2022; 6:2508-2518. [PMID: 36303715 PMCID: PMC9589906 DOI: 10.1021/acsearthspacechem.2c00213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Life detection missions to the outer solar system are concentrating on the icy moons of Jupiter and Saturn and their inferred subsurface oceans. Access to evidence of habitability, and possibly even life, is facilitated by the ejection of subsurface material in plumes and outgassing fissures. Orbiting spacecraft can intersect the plume material or detect past sputtered remnants of outgassed products and analyze the contents using instruments such as mass spectrometers. Hydrothermalism has been proposed for the subsurface environments of icy moons, and the organic remains of any associated life would be expected to suffer some degradation through hydrothermalism, radiolysis, or spacecraft flyby impact fragmentation. Hydrothermalism is treated here for the first time in the context of the Europa Clipper mission. To assess the influence of hydrothermalism on the ability of orbiting mass spectrometers to detect degrading signals of life, we have subjected Earth microorganisms to laboratory hydrothermal processing. The processed microorganism samples were then analyzed using gas chromatography-mass spectrometry (GC-MS), and mass spectra were generated. Certain compound classes, such as carbohydrates and proteins, are significantly altered by hydrothermal processing, resulting in small one-ring and two-ring aromatic compounds such as indoles and phenols. However, lipid fragments, such as fatty acids, retain their fidelity, and their provenance is easily recognized as biological in origin. Our data indicate that mass spectrometry measurements in the plumes of icy moons, using instruments such as the MAss Spectrometer for Planetary Exploration (MASPEX) onboard the upcoming Europa Clipper mission, can reveal the presence of life even after significant degradation by hydrothermal processing has taken place.
Collapse
Affiliation(s)
- Tara L. Salter
- Impacts
and Astromaterials Research Centre, Department of Earth Science and
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jonathan S. Watson
- Impacts
and Astromaterials Research Centre, Department of Earth Science and
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - J. Hunter Waite
- Space
Science and Engineering Division, Southwest
Research Institute, San Antonio, Texas 78238, United States
| | - Mark A. Sephton
- Impacts
and Astromaterials Research Centre, Department of Earth Science and
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Câmara JS, Martins C, Pereira JAM, Perestrelo R, Rocha SM. Chromatographic-Based Platforms as New Avenues for Scientific Progress and Sustainability. Molecules 2022; 27:5267. [PMID: 36014506 PMCID: PMC9412595 DOI: 10.3390/molecules27165267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chromatography was born approximately one century ago and has undergone outstanding technological improvements in innovation, research, and development since then that has made it fundamental to advances in knowledge at different levels, with a relevant impact on the well-being and health of individuals. Chromatography boosted a comprehensive and deeper understanding of the complexity and diversity of human-environment interactions and systems, how these interactions affect our life, and the several societal challenges we are currently facing, namely those related to the sustainability of our planet and the future generations. From the life sciences, which allowed us to identify endogenous metabolites relevant to disease mechanisms, to the OMICS field, nanotechnology, clinical and forensic analysis, drug discovery, environment, and "foodprint", among others, the wide range of applications of today's chromatographic techniques is impressive. This is fueled by a great variability of powerful chromatographic instruments currently available, with very high sensitivity, resolution, and identification capacity, that provide a strong basis for an analytical platform able to support the challenging demands of the postgenomic and post COVID-19 eras. Within this context, this review aims to address the great utility of chromatography in helping to cope with several societal-based challenges, such as the characterization of disease and/or physiological status, and the response to current agri-food industry challenges of food safety and sustainability, or the monitoring of environmental contamination. These are increasingly important challenges considering the climate changes, the tons of food waste produced every day, and the exponential growth of the human population. In this context, the principles governing the separation mechanisms in chromatography as well the different types and chromatographic techniques will be described. In addition, the major achievements and the most important technological advances will be also highlighted. Finally, a set of studies was selected in order to evince the importance of different chromatographic analyses to understand processes or create fundamental information in the response to current societal challenges.
Collapse
Affiliation(s)
- José S. Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Cátia Martins
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A. M. Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Sílvia M. Rocha
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Instrumentation for Detecting Sulphur Isotopes as Biosignatures on Europa and Ganymede by Forthcoming Missions. UNIVERSE 2022. [DOI: 10.3390/universe8070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
There has been remarkable progress in identifying a certain type of biosignature, both from the point of view of the payloads of forthcoming missions, and from the point of view of biogeochemistry. This progress has been due to the evolution of miniaturized mass spectrometry that can be used, under certain circumstances and for certain samples, to distinguish between putatively abiotic and biotic sulphur isotopes. These specific types of biosignatures are discussed in the context of Europa and Ganymede. Such instruments are sufficiently precise to differentiate between abiotic and biotic signatures. We reflect on new possibilities that will be available during this decade for exploring the nearest ocean worlds: Europa and Ganymede. We review arguments that point out the presence of intriguing sulphur patches on Europa’s icy surface that were discovered by the Galileo mission. These patches lead to a “sulphur dilemma”, which suggests not to focus future measurements exclusively on organics. We comment on the possibility of measurements of sulphur isotopes, as one kind of biosignature, to be complemented with additional biosignatures, in order to fully test biogenicity. These suggestions are intended to point out the best use of the available spacecrafts’ payloads during the planning of the forthcoming Jovian missions.
Collapse
|