1
|
Abrahamsson V, Henderson BL, Friedman A, Gross J, Prothmann J, Davila AF, Williams AJ, Lin Y, Kanik I, Zhong F. Supercritical CO 2 and Subcritical H 2O Analysis Instrument: Automated Lipid Analysis for In Situ Planetary Life Detection. Anal Chem 2024; 96:13389-13397. [PMID: 39120043 DOI: 10.1021/acs.analchem.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The search for extraterrestrial extant or extinct life in our Solar System will require highly capable instrumentation and methods for detecting low concentrations of biosignatures. This paper introduces the Supercritical CO2 and Subcritical H2O Analysis (SCHAN) instrument, a portable and automated system that integrates supercritical fluid extraction (SFE), supercritical fluid chromatography (SFC), and subcritical water extraction coupled with liquid chromatography. The instrument is compact and weighs 6.3 kg, making it suitable for spaceflight missions to planetary bodies. Traditional techniques, such as gas chromatography-mass spectrometry (MS), face challenges with involatile and thermally labile analytes, necessitating derivatization. The SCHAN instrument, however, eliminates the need for derivatization and cosolvents by utilizing neat supercritical CO2 with water as an additive. This SFE-SFC-MS method gives efficient lipid biosignature separations with median detection limits of 10 pg/g (ppt) for fatty acids and 50 pg/g (ppt) for sterols. Several free fatty acids and cholesterol were among the detected peaks in biologically lean samples from the Atacama Desert, demonstrating the instrument's potential for in situ life detection missions. The SCHAN instrument addresses the challenges of conventional systems, offering a compact, portable, and spaceflight-compatible tool for the analysis of organics for future astrobiology-focused missions.
Collapse
Affiliation(s)
- Victor Abrahamsson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Bryana L Henderson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Adam Friedman
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Johannes Gross
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Jens Prothmann
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Alfonso F Davila
- NASA Ames Research Center, Moffett Field ,California 94035-1000, United States
| | - Amy J Williams
- University of Florida, Gainesville ,Florida 32611-7011, United States
| | - Ying Lin
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Isik Kanik
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Fang Zhong
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| |
Collapse
|
2
|
Bonaccorsi R, Glass B, Moreno-Paz M, García-Villadangos M, Warren-Rhodes K, Parro V, Manchado JM, Wilhelm MB, McKay CP. In Situ Real-Time Monitoring for Aseptic Drilling: Lessons Learned from the Atacama Rover Astrobiology Drilling Studies Contamination Control Strategy and Implementation and Application to the Icebreaker Mars Life Detection Mission. ASTROBIOLOGY 2023; 23:1303-1336. [PMID: 38133823 DOI: 10.1089/ast.2022.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In 2019, the Atacama Rover Astrobiology Drilling Studies (ARADS) project field-tested an autonomous rover-mounted robotic drill prototype for a 6-Sol life detection mission to Mars (Icebreaker). ARADS drilled Mars-like materials in the Atacama Desert (Chile), one of the most life-diminished regions on Earth, where mitigating contamination transfer into life-detection instruments becomes critical. Our Contamination Control Strategy and Implementation (CCSI) for the Sample Handling and Transfer System (SHTS) hardware (drill, scoop and funnels) included out-of-simulation protocol testing (out-of-sim) for hardware decontamination and verification during the 6-Sol simulation (in-sim). The most effective five-step decontamination combined safer-to-use sterilants (3%_hydrogen-peroxide-activated 5%_sodium-hypochlorite), and in situ real-time verification by adenosine triphosphate (ATP) and Signs of Life Detector (SOLID) Fluorescence Immunoassay for characterization hardware bioburden and airborne contaminants. The 20- to 40-min protocol enabled a 4-log bioburden reduction down to <0.1 fmoles ATP detection limit (funnels and drill) to 0.2-0.7 fmoles (scoop) of total ATP. The (post-cleaning) hardware background was 0.3 to 1-2 attomoles ATP/cm2 (cleanliness benchmark background values) equivalent to ca. 1-10 colony forming unit (CFU)/cm2. Further, 60-100% of the in-sim hardware background was ≤3-4 bacterial cells/cm2, the threshold limit for Class <7 aseptic operations. Across the six Sols, the flux of airborne contaminants to the drill sites was ∼5 and ∼22 amoles ATP/(cm2·day), accounting for an unexpectedly high Fluorescence Intensity (FI) signal (FI: ∼6000) against aquatic cyanobacteria, but negligible anthropogenic contribution. The SOLID immunoassay also detected microorganisms from multiple habitats across the Atacama Desert (anoxic, alkaline/acidic microenvironments in halite fields, playas, and alluvial fans) in both airborne and post-cleaning hardware background. Finally, the hardware ATP background was 40-250 times lower than the ATP in cores. Similarly, the FI peaks (FImax) against the microbial taxa and molecular biomarkers detected in the post-cleaned hardware (FI: ∼1500-1600) were 5-10 times lower than biomarkers in drilled sediments, excluding significant interference with putative biomarker found in cores. Similar protocols enable the acquisition of contamination-free materials for ultra-sensitive instruments analysis and the integrity of scientific results. Their application can augment our scientific knowledge of the distribution of cryptic life on Mars-like grounds and support life-detection robotic and human-operated missions to Mars.
Collapse
Affiliation(s)
- Rosalba Bonaccorsi
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | - Brian Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - Kimberley Warren-Rhodes
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | - Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | - Juan Manuel Manchado
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | |
Collapse
|
3
|
Glass B, Bergman D, Parro V, Kobayashi L, Stoker C, Quinn R, Davila A, Willis P, Brinckerhoff W, Warren-Rhodes K, Wilhelm M, Caceres L, DiRuggiero J, Zacny K, Moreno-Paz M, Dave A, Seitz S, Grubisic A, Castillo M, Bonaccorsi R. The Atacama Rover Astrobiology Drilling Studies (ARADS) Project. ASTROBIOLOGY 2023; 23:1245-1258. [PMID: 38054949 PMCID: PMC10750311 DOI: 10.1089/ast.2022.0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/01/2023] [Indexed: 12/07/2023]
Abstract
With advances in commercial space launch capabilities and reduced costs to orbit, humans may arrive on Mars within a decade. Both to preserve any signs of past (and extant) martian life and to protect the health of human crews (and Earth's biosphere), it will be necessary to assess the risk of cross-contamination on the surface, in blown dust, and into the near-subsurface (where exploration and resource-harvesting can be reasonably anticipated). Thus, evaluating for the presence of life and biosignatures may become a critical-path Mars exploration precursor in the not-so-far future, circa 2030. This Special Collection of papers from the Atacama Rover Astrobiology Drilling Studies (ARADS) project describes many of the scientific, technological, and operational issues associated with searching for and identifying biosignatures in an extreme hyperarid region in Chile's Atacama Desert, a well-studied terrestrial Mars analog environment. This paper provides an overview of the ARADS project and discusses in context the five other papers in the ARADS Special Collection, as well as prior ARADS project results.
Collapse
Affiliation(s)
- B. Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | - D. Bergman
- Honeybee Robotics, Pasadena, California, USA
| | - V. Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejon de Ardoz, Spain
| | - L. Kobayashi
- NASA Ames Research Center, Moffett Field, California, USA
| | - C. Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | - R. Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - A. Davila
- NASA Ames Research Center, Moffett Field, California, USA
| | - P. Willis
- NASA Jet Propulsion Laboratory, Pasadena, California, USA
| | | | - K. Warren-Rhodes
- NASA Ames Research Center, Moffett Field, California, USA
- SETI Institute, Carl Sagan Center, Mountain View, California, USA
| | - M.B. Wilhelm
- NASA Ames Research Center, Moffett Field, California, USA
| | - L. Caceres
- University of Antofagasta, Antofagasta, Chile
| | | | - K. Zacny
- Honeybee Robotics, Pasadena, California, USA
| | - M. Moreno-Paz
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejon de Ardoz, Spain
| | - A. Dave
- NASA Ames Research Center, Moffett Field, California, USA
| | - S. Seitz
- NASA Ames Research Center, Moffett Field, California, USA
| | - A. Grubisic
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - M. Castillo
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - R. Bonaccorsi
- NASA Ames Research Center, Moffett Field, California, USA
- SETI Institute, Carl Sagan Center, Mountain View, California, USA
| |
Collapse
|