1
|
Kamenskikh EM, Krygina AY, Gomboeva SC, Zhailebaeva D, Koval DP, Kicherov NA, Otchurzhap CN, Birulina YG, Alifirova VM. [Biobanking in clinical trials involving multiple sclerosis patients]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:7-15. [PMID: 39175234 DOI: 10.17116/jnevro20241240727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Investigation of multiple sclerosis (MS) pathogenesis requires sophisticated analytical tools of precision medicine, such as omics research, which include genomics, microbiomics and metabolomics (proteomics, lipidomics and glycomics). Such sensitive methods are based on careful preanalytical work with biomaterials to maintain quality and obtain objective results. Implementation of biobanking as a universal method for working with biomaterials will help to standardize the stages of research, compare different scientific team's results. Collaboration of MS researchers with large biobanks can also help to conduct multicenter and long-term prospective studies, to include a wide number of patients. In this article, we analyze the experience of biobanking practice technologies in studies of MS patients and share the experience of partnership between the Center for MS of the Tomsk Region and the Bank of Biological Material of the Siberian State Medical University.
Collapse
Affiliation(s)
| | - A Yu Krygina
- Siberian State Medical University, Tomsk, Russia
| | | | | | - D P Koval
- Siberian State Medical University, Tomsk, Russia
| | - N A Kicherov
- Siberian State Medical University, Tomsk, Russia
| | | | | | | |
Collapse
|
2
|
Clavreul A, Soulard G, Lemée JM, Rigot M, Fabbro-Peray P, Bauchet L, Figarella-Branger D, Menei P. The French glioblastoma biobank (FGB): a national clinicobiological database. J Transl Med 2019; 17:133. [PMID: 31014363 PMCID: PMC6480741 DOI: 10.1186/s12967-019-1859-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glioblastomas (GB) are the most common and lethal primary brain tumors. Significant progress has been made toward identifying potential risk factors for GB and diagnostic and prognostic biomarkers. However, the current standard of care for newly diagnosed GB, the Stupp protocol, has remained unchanged for over a decade. Large-scale translational programs based on a large clinicobiological database are required to improve our understanding of GB biology, potentially facilitating the development of personalized and specifically targeted therapies. With this goal in mind, a well-annotated clinicobiological database housing data and samples from GB patients has been set up in France: the French GB biobank (FGB). METHODS The biobank contains data and samples from adult GB patients from 24 centers in France providing written informed consent. Clinical and biomaterial data are stored in anonymized certified electronic case report forms. Biological samples (including frozen and formalin-fixed paraffin-embedded tumor tissues, blood samples, and hair) are conserved in certified biological resource centers or tumor tissue banks at each participating center. RESULTS Clinical data and biological materials have been collected for 1087 GB patients. A complete set of samples (tumor, blood and hair) is available for 66%, and at least one frozen tumor sample is available for 88% of the GB patients. CONCLUSIONS This large biobank is unique in Europe and can support the large-scale translational projects required to improve GB care. Additional biological materials, such as peritumoral brain zone and fecal samples, will be collected in the future, to respond to research needs.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Gwénaëlle Soulard
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Jean-Michel Lemée
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Marion Rigot
- Département Promotion, Direction de la Recherche, CHU Nantes, Nantes, France
| | - Pascale Fabbro-Peray
- Département de Biostatistique, Epidémiologie, Santé Publique, CHU Nîmes, Nîmes, France.,Unité de recherche EA2415, Université de Montpellier, Montpellier, France
| | - Luc Bauchet
- Département de Neurochirurgie, Hôpital Gui de Chauliac, CHU Montpellier, Université de Montpellier, Montpellier, France.,Institut des Neurosciences de Montpellier INSERM U1051, Montpellier, France
| | - Dominique Figarella-Branger
- APHM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU, 4 rue Larrey, 49 933, Angers Cedex 9, France. .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | | |
Collapse
|