1
|
Fisher JJ, Grace T, Castles NA, Jones EA, Delforce SJ, Peters AE, Crombie GK, Hoedt EC, Warren KE, Kahl RG, Hirst JJ, Pringle KG, Pennell CE. Methodology for Biological Sample Collection, Processing, and Storage in the Newcastle 1000 Pregnancy Cohort: Protocol for a Longitudinal, Prospective Population-Based Study in Australia. JMIR Res Protoc 2024; 13:e63562. [PMID: 39546349 DOI: 10.2196/63562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Research in the developmental origins of health and disease provides compelling evidence that adverse events during the first 1000 days of life from conception can impact life course health. Despite many decades of research, we still lack a complete understanding of the mechanisms underlying some of these associations. The Newcastle 1000 Study (NEW1000) is a comprehensive, prospective population-based pregnancy cohort study based in Newcastle, New South Wales, Australia, that will recruit pregnant women and their partners at 11-14 weeks' gestation, with assessments at 20, 28, and 36 weeks; birth; 6 weeks; and 6 months, in order to provide detailed data about the first 1000 days of life to investigate the developmental origins of noncommunicable diseases. OBJECTIVE The study aims to provide a longitudinal multisystem approach to phenotyping, supported by robust clinical data and collection of biological samples in NEW1000. METHODS This manuscript describes in detail the large variety of samples collected in the study and the method of collection, storage, and utility of the samples in the biobank, with a particular focus on incorporation of the samples into emerging and novel large-scale "-omics" platforms, including the genome, microbiome, epigenome, transcriptome, fragmentome, metabolome, proteome, exposome, and cell-free DNA and RNA. Specifically, this manuscript details the methods used to collect, process, and store biological samples, including maternal, paternal, and fetal blood, microbiome (stool, skin, vaginal, oral), urine, saliva, hair, toenail, placenta, colostrum, and breastmilk. RESULTS Recruitment for the study began in March 2021. As of July 2024, 1040 women and 684 partners were enrolled, with 922 infants born. The NEW1000 biobank contains 24,357 plasma aliquots from ethylenediaminetetraacetic acid (EDTA) tubes, 5284 buffy coat aliquots, 4000 plasma aliquots from lithium heparin tubes, 15,884 blood serum aliquots, 2977 PAX RNA tubes, 26,595 urine sample aliquots, 2280 fecal swabs, 17,687 microbiome swabs, 2356 saliva sample aliquots, 1195 breastmilk sample aliquots, 4007 placental tissue aliquots, 2680 hair samples, and 2193 nail samples. CONCLUSIONS NEW1000 will generate a multigenerational, deeply phenotyped cohort with a comprehensive biobank of samples relevant to a large variety of analyses, including multiple -omics platforms. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/63562.
Collapse
Affiliation(s)
- Joshua J Fisher
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Tegan Grace
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Nathan A Castles
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Elizabeth A Jones
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Sarah J Delforce
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Alexandra E Peters
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Gabrielle K Crombie
- School of Life and Medical Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Emily C Hoedt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Kirby E Warren
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Richard Gs Kahl
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Craig E Pennell
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
2
|
Díaz T, Ortega-Pinazo J, Martínez B, Jiménez A, Gómez-Zumaquero JM, Caracuel Z, Hortas ML, Ferro P. Measurement of yield and quality of DNA in human buffy coat is extraction method dependent. Prep Biochem Biotechnol 2022:1-8. [PMID: 36121058 DOI: 10.1080/10826068.2022.2119574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
During the last few years, an important element in the improvement of the molecular biology techniques has been the necessity for availability of high quality and functionality DNA. Several DNA extraction procedures with different results in both performance and quality, have been proposed. In this study our objective was to determine the most reliable extraction method that balances DNA quantity, and to assess the sample quantification of the fluorometric DNA quantification methods. For this, blood extracted by venopunction from 20 healthy volunteers was used to obtain DNA from buffy coat, and 4 commercial DNA extraction kits were assessed as well as two fluorometric DNA quantification methods with protocols of different complexity. Results suggest that manual methods achieve higher quality and larger yields of DNA. DNA purity obtained with the 4 extraction kits evaluated through the 260/280 and 260/230 ratio showed that the Qiacube kit fulfilled the criteria established in this work, followed very close by the Flexigene kit. On the other hand, the fluorometric DNA methods used in the samples quantification showed a higher variability when using QuantiFlour method, obtaining better results probably due to the simplicity of this protocol.
Collapse
Affiliation(s)
- T Díaz
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga-IBIMA, Malaga, Spain
| | - J Ortega-Pinazo
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Neurociencias, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - B Martínez
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga-IBIMA, Malaga, Spain
| | - A Jiménez
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga-IBIMA, Malaga, Spain
| | - J M Gómez-Zumaquero
- Genomic ECAI, Instituto de Investigación Biomédica de Málaga-IBIMA, Malaga, Spain
| | - Z Caracuel
- Costa del Sol Sanitary Agency, Sanitary District of Málaga, Malaga, Spain
| | - M L Hortas
- Costa del Sol Sanitary Agency, Sanitary District of Málaga, Malaga, Spain
| | - P Ferro
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga-IBIMA, Malaga, Spain.,Unidad Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
3
|
Zou C, Ji C, Zhu Y, Liu N, Zhang S, Peng H, Zhang X, Wang H, Deng Y, Qian K. Effects of Freezing and Rewarming Methods on RNA Quality of Blood Samples. Biopreserv Biobank 2022; 21:176-183. [PMID: 35759420 DOI: 10.1089/bio.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: RNA extracted from human blood has been widely applied to biological, medical, and clinical research of numerous diseases. Previous studies have demonstrated that high-quality RNA is indispensable to guarantee the reliability of downstream assays. In this study, we investigated the effects of freezing procedures, rewarming methods, and blood components on RNA quality of blood samples. Methods: Rabbit blood samples were divided into two groups: (1) whole blood (WB) and (2) blood cell components (BCC) with plasma removed. Samples were frozen using four representative freezing procedures (snap freezing in liquid nitrogen, snap freezing at -80°C, traditional slow freezing, and programmable controlled rate freezing) and rewarmed by placing at 4°C or by vortexing. RNA was extracted using the phenol-chloroform RNA extraction method and measured by an Agilent bioanalyzer. Then, human blood was used to verify the best protocol obtained from the rabbit blood experiment. Results: For the four freezing procedures, there were no differences in RNA integrity. For different rewarming methods, RNA integrity number (RIN) values of RNA extracted from frozen WB and BCC samples in the vortex group were above 9, while RNA obtained from WB showed worse quality compared with BCC in the 4°C group. For verification using human blood, RIN values of frozen human WB rewarmed by vortexing ranged from 8.0 to 9.1. Conclusions: Blood components and rewarming methods could affect the RNA quality of blood samples. For scenarios where WB samples have already been cryopreserved, the vortex rewarming method is optimal for high-quality RNA. Otherwise, we would recommend centrifuging fresh WB and cryopreserving it in the form of BCC, which showed a tendency to obtain high-quality RNA by either of the two rewarming methods.
Collapse
Affiliation(s)
- Cong Zou
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chundong Ji
- Department of Urology, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Yuan Zhu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan Liu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shanshan Zhang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongwei Peng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Zhang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanhua Deng
- Department of Urology, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| |
Collapse
|
4
|
Tang R, Han C, Yin R, Zhu P, Zhu L, Lu Y, Zheng C. Quality Control of DNA Extracted from All-Cell Pellets After Cryopreservation for More Than 10 Years. Biopreserv Biobank 2021; 20:211-216. [PMID: 34435893 DOI: 10.1089/bio.2021.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Cryopreserved whole blood, all-cell pellets (ACPs), and buffy coats in biobanks are widely used to obtain DNA for genetic testing. However, there are few studies concerning the quality control of DNA extracted from them. Our research aimed to perform quality control of DNA extracted from ACPs after cryopreservation for >10 years. Materials and Methods: A total of 1377 ACP samples (separated from 3 mL of whole blood) were retrieved from our biobank, where they had been cryopreserved for 10-15 years. Chemagic STAR was used to extract the DNA. Absorbance at A260, A280, and A230 were measured by spectrophotometry, and integrity was analyzed by agarose gel electrophoresis. The quality thresholds for an Illumina Asian Screening Array (ASA) were yields greater than 0.5 μg, concentration of 25-150 ng/μL, A260/280 ratio of 1.6-2.1, and no degradation fragments in the electrophoresis gel. Results: The median yield of genomic DNA was 54.30 μg (interquartile range [IQR] 35.55-74.64). The median A260/280 and A260/230 ratios were 1.90 (IQR 1.87-1.94) and 1.98 (IQR 1.64-2.41), respectively. In total, 1377 samples (100%) had qualified yields, and 1366 samples (99.20%) had qualified integrity results. Finally, 1328 (96.44%) samples were used for ASA. Of the remaining samples, 34 needed to be repurified, 4 were obtained at an insufficient concentration, and 11 were unqualified for integrity. In addition, we analyzed the influence of hemolysis (90 samples) and clots (102 samples) on the quality of DNA samples. Hemolysis and clotting did not influence yield or integrity, but a significant difference was found in A260/230 compared to normal samples (p < 0.05). Furthermore, the samples (14 samples) with both hemolysis and clots had higher A260/280 (p < 0.05). Conclusion: ACP samples stored for >10 years at -80°C produced DNA with high quality for use in genetic analysis. Hemolysis and clots in the ACPs led to lower purity, but did not significantly affect yield or integrity.
Collapse
Affiliation(s)
- Rong Tang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Cui Han
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ru Yin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ping Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ling Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yinghui Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
5
|
Skirko OP, Meshkov AN, Efimova IA, Kutsenko VA, Kiseleva AV, Pokrovskaya MS, Kurilova OV, Sotnikova EA, Klimushina MV, Drapkina OM. Shelf life of whole blood samples in a biobank and the yield of deoxyribonucleic acid during genetic testing. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim. To study the effect of the shelf life of frozen whole blood samples in a biobank on the amount of released deoxyribonucleic acid (DNA).Material and methods. The study included whole blood samples placed in tubes with the anticoagulant EDTA (ethylenediaminetetraacetic acid at a concentration of 1,8 mg/ml) from participants in the epidemiological study ESSE-RF-1 and ESSE-RF-2 and cohort studies conducted at the National Medical Research Center for Therapy and Preventive Medicine. The samples were stored in the biobank of the National Medical Research Center for Therapy and Preventive Medicine at temperature from -22О C to -32О C. The shelf life from blood collection to DNA extraction ranged from several weeks to 11 years. DNA was extracted using QIAamp DNA Blood Mini Kit (250) and 96 Blood Kit (Qiagen, Germany). Statistical analysis was performed using the R 3.6.1 software. To analyze the association of blood storage time with the logarithm of DNA concentration, a linear regression was used.Results. The analysis included data on the DNA concentration of 5405 samples. Multivariate regression showed that the blood shelf life was significantly associated with a decrease in concentration by 3,92% (3,16-4,68) for each year of storage (p <0,0001). For 509 samples, the DNA concentration was measured twice, immediately after isolation and after 4,5 years of DNA storage at -32О C. During storage, the concentration of DNA increased by an average of 2% (p=0,046).Conclusion. Long-term storage of whole blood samples at temperature from -22О C to -32О C is associated with a decrease in the DNA yield. Long-term storage of the isolated DNA at a temperature of -32О C is not associated with a decrease in its concentration.
Collapse
Affiliation(s)
- O. P. Skirko
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. N. Meshkov
- National Medical Research Center for Therapy and Preventive Medicine
| | - I. A. Efimova
- National Medical Research Center for Therapy and Preventive Medicine
| | - V. A. Kutsenko
- National Medical Research Center for Therapy and Preventive Medicine;
Lomonosov Moscow State University
| | - A. V. Kiseleva
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. V. Kurilova
- National Medical Research Center for Therapy and Preventive Medicine
| | - E. A. Sotnikova
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. V. Klimushina
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
6
|
Doludin YV, Limonova AS, Kozlova VA, Efimova AI, Borisova AL, Meshkov AN, Pokrovskaya MS, Drapkina OM. Collection and storage of DNA-containing biomaterial and isolated DNA. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advances of biomedicine include the new technologies, diagnosis and treatment techniques, as well as the practical use of new types of biological targets, in particular, nucleic acids. Genomic deoxyribonucleic acid (DNA), extracellular DNA (exDNA) and microbiome DNA obtained from different types of samples (tissues, blood and its derivatives, feces, etc.) are used as objects of genetic research. The use of new technologies for DNA analysis required the development of standardized methods for processing biological samples in order to obtain high-quality DNA samples. The research uses various methods for collecting, preparing samples and storing various DNA-containing biomaterials and isolated DNA, as well as methods for assessing the quality of samples and biobank standards. It is obvious that the use of uniform standards will allow large-scale genetic research on the basis of biobanks and research laboratories. Specialists from professional organizations such as International Society for Biological and Environmental Repositories (ISBER), Biobanking and BioMolecular Resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC), European, Middle Eastern & African Society for Biopreservationa and Biobanking (ESBB) and the Russian National Association of Biobanks and Biobanking Professionals.
Collapse
Affiliation(s)
- Yu. V. Doludin
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. S. Limonova
- National Medical Research Center for Therapy and Preventive Medicine
| | - V. A. Kozlova
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. I. Efimova
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. L. Borisova
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. N. Meshkov
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|